1
|
Li J, Yu S, Cui M. Aged polyamide microplastics enhance the adsorption of trimethoprim in soil environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:669. [PMID: 37184777 DOI: 10.1007/s10661-023-11350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Microplastics (MPs) in the environment typically age. However, the influence of aged MPs on the adsorption of antibiotics in soil remains unknown. In this study, the adsorption behavior of trimethoprim (TMP) on soil and soil containing aged polyamide (PA) was investigated using batch and stirred flow chamber experiments. The adsorption of TMP on the tested soil with and without PA was fast, with the ka values ranging from 50.5 to 55.6 L (mg min)-1. The adsorption of TMP on aged PA was more than 20 times larger than that on the tested soil, which resulted in an "enrichment effect." Furthermore, aged PA altered the pH of the reaction system, thereby enhancing the adsorption of TMP. Consequently, the Kd values of TMP for soil, soil containing 5%, and 10% aged PA were 5.64, 12.38, and 23.65 L kg-1, respectively. The effect of aged PA on the adsorption of TMP on soil depended on pH values. However, TMP adsorption on soil containing 10% aged PA was constantly higher (p < 0.01) than that on soil with NaCl concentrations ranging from 0 to 50 mmol L-1. These findings provide new insights into the effect of environmental MPs on the fate and transport of antibiotics in soil environments.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
2
|
Padilla JT, Selim HM, Gaston LA. Modeling the sorption of Ni(II) and Zn(II) by Mn oxide-coated sand: Equilibrium and kinetic approaches. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1168-1180. [PMID: 35985791 DOI: 10.1002/jeq2.20404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The behavior of metal cations in oxide-dominated systems is controlled by sorption reactions, which in turn depend on pH. Descriptions of such reactions are of interest for contaminant monitoring or remediation efforts; however, widely used isotherms such as Freundlich or Langmuir neglect the effect of pH and are therefore limited in their applicability. Two pH-dependent isotherms and their kinetic analogs were developed and evaluated regarding their ability to describe equilibrium and time-dependent sorption of Ni and Zn by Mn oxide-coated sand (MOCS). The sorption of Ni and Zn by MOCS at pH 4.0, 5.5, and 7.0 was investigated using batch equilibration and stirred-flow techniques. The affinity of MOCS for either metal cation was highly pH dependent, with greater affinity at higher pH. Both isotherms described the batch data well. Flow interruption during stirred-flow experiments indicated that chemical nonequilibrium existed between solution and sorbed phases of both Ni and Zn and that such nonequilibrium was greater with increasing pH. Both kinetic models provided good descriptions of the solution data from stirred-flow experiments and correctly captured the effect of pH on chemical nonequilibrium. These models offer simple alternatives to surface complexation approaches and are expected to be easily applied to describe equilibrium and time-dependent sorption of a wide range of metal cations by variably charged minerals or oxide-coated media.
Collapse
Affiliation(s)
- Joshua T Padilla
- USDA-ARS, Coastal Plain Soil, Water & Plant Research Center, 2611 W. Lucas St., Florence, SC, 29501, USA
| | - H Magdi Selim
- School of Plant, Environmental, and Soil Sciences, Louisiana State Univ., Tower Rd., Baton Rouge, LA, 70803, USA
| | - Lewis A Gaston
- School of Plant, Environmental, and Soil Sciences, Louisiana State Univ., Tower Rd., Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Zhang Y, Wu Z, Shi H, Xie Y, Wu MY, Zhang C, Feng S. Copper Mediated Molecularly Imprinted Polymers for Fast Recognizing Tylosin. J Pharm Biomed Anal 2022; 213:114674. [DOI: 10.1016/j.jpba.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
4
|
Yang T, Zheng T, Wang Y, Zhang Y, He D, Zeng H, Wei Y, Chen X, Wan J, Cao X. Effective extraction of tylosin and spiramycin from fermentation broth using thermo-responsive ethylene oxide/propylene oxide aqueous two-phase systems. J Sep Sci 2021; 45:570-581. [PMID: 34818453 DOI: 10.1002/jssc.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022]
Abstract
Recyclable aqueous two-phase systems with thermo-responsive phase-forming materials have been employed to separate macromolecules; however, these systems have achieved very limited separation efficiency for small molecules, such as antibiotics. In this study, aqueous two-phase systems composed of the ethylene oxide/propylene oxide copolymer and water were developed to extract alkaline antibiotics from the fermentation broth. In the aqueous two-phase systems with an ethylene oxide ratio of 20 and propylene oxide ratio of 80, the partition coefficients of tylosin and spiramycin reached 16.87 and 20.39, respectively, while the extraction recoveries were 70.67 and 86.70%, respectively. Coupled with mechanism analysis, we demonstrated the feasibility of extracting alkaline antibiotics using this aqueous two-phase system, especially for 16-membered macrolide antibiotics. The molecular dynamic simulation was employed to visualize the process of dual-phase formation and the partition behavior of antibiotics in an aqueous two-phase system. The dynamic simulation revealed the binding energy between the antibiotic and ethylene oxide/propylene oxide copolymers, which provides a simple indicator for screening suitable antibiotics in aqueous two-phase systems. Our recyclable aqueous two-phase systems provide a robust approach for the extraction of 16-membered macrolide antibiotics with ease of operation and high recovery rates, which is appropriate for large-scale extraction in the fermentation industry.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Ting Zheng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Wang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Dong He
- Henan Topfond Pharmaceutical Company Limited, Zhumadian, P. R. China
| | - Hainan Zeng
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanli Wei
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Junfen Wan
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|