Hersom M, Imler A, Thrift T, Yelich J, Arthington J. Comparison of feed additive technologies for preconditioning of weaned beef calves.
J Anim Sci 2015;
93:3169-78. [PMID:
26115303 DOI:
10.2527/jas.2014-8689]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our objective was to evaluate the response of weaned calves to different supplemental feed additives in a supplement to affect calf performance and mitigate stress response observed during weaning and preconditioning. At weaning in each of 2 yr, 160 Angus and Brangus calves (203 and 227 ± 2.3 and 2.5 kg) were stratified by BW, sex, and breed and were randomly allotted to 1 of 4 treatments ( = 40 calves/treatment): 1) supplement without feed additives (control, CON), 2) supplemented with chlortetracycline, 350 mg/d (CTC), 3) supplemented with monensin, 175 mg/d (RUM), and 4) supplemented with rumen modifier, 5 g/d (ACT). Calves were held by treatment in 1 of 4 drylot pens for 7 d after weaning and were offered ad libitum access to hay and 2.27 kg/d of supplement before placement in one of thirty-two 0.8-ha pastures (5 calves/pasture). On pasture calves were supplemented with 2.27 kg/d (yr 1) or supplemented at 1.0% BW (yr 2). Calf BW and blood samples were collected following weaning (d 0, 1, 4, 7, 11 in yr 1; d 0, 1, 3, 7, 14 in yr 2), at the conclusion of the preconditioning period (d 50, 51 in yr 2), and after transportation (d 52, 55, 59, 65 in yr 2) for analysis of acute phase protein (APP) concentrations. In yr 2, after 44 d on pasture, calves were loaded on 2 semitrucks and transported for 24 h. On return, calves were placed in 4 pastures with hay and fed their respective supplements for 14 d. For each year, data were analyzed with the MIXED procedure of SAS. The model included the main effect of treatment, and pasture was the experimental unit. All variables quantified by day were analyzed using repeated measures. In yr 1, ACT and CTC had greater (P <0.05) 52-d ADG than RUM, whereas CON was intermediate. However, in yr 2, over the 50-d postweaning period there was no difference (P = 0.20; 0.52 kg/d) in ADG response among treatments. After transportation, 7- and 14-d ADG were improved (P < 0.05) for ACT and CTC compared with CON and RUM. In both years, postweaning plasma concentrations of haptoglobin were similar (P > 0.05) among treatments; however an effect of day after transport (P < 0.001) was observed. Feed cost of gain and income over production cost (P ≥ 0.15; mean = $0.51/kg and $73.51, respectively) were not different among treatments. Use of supplemental additives may improve calf performance during a preconditioning period of this duration, but no additive was effective at mitigating stress postweaning. Additives were equally effective in supporting calf growth performance during a posttransportation period.
Collapse