1
|
Mason C, Tschirren B, Hemmings N. Effects of female-specific selection for reproductive investment on male fertility traits. J Evol Biol 2024; 37:1113-1124. [PMID: 39110095 DOI: 10.1093/jeb/voae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.
Collapse
Affiliation(s)
- Chloe Mason
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Nicola Hemmings
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Sperm morphology and performance in relation to postmating prezygotic isolation in two recently diverged passerine species. Sci Rep 2022; 12:22275. [PMID: 36566302 PMCID: PMC9789955 DOI: 10.1038/s41598-022-26101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Divergence in sperm phenotype and female reproductive environment may be a common source of postmating prezygotic (PMPZ) isolation between species. However, compared to other reproductive barriers it has received much less attention. In this study, we examined sperm morphology and velocity in two hybridizing passerine species, the common nightingale (Luscinia megarhynchos) and thrush nightingale (L. luscinia). In addition, we for the first time characterized a passerine female reproductive tract fluid proteome. We demonstrate that spermatozoa of the common nightingale have significantly longer and wider midpiece (proximal part of the flagellum containing mitochondria) and longer tail compared to spermatozoa of thrush nightingale. On the other hand, they have significantly shorter and narrower acrosome. Importantly, these differences did not have any effect on sperm velocity. Furthermore, the fluid from the reproductive tract of common nightingale females did not differentially affect velocity of conspecific and heterospecific sperm. Our results indicate that the observed changes in the flagellum and acrosome size are unlikely to contribute to PMPZ isolation through differential sperm velocity of conspecific and heterospecific sperm in the female reproductive tract. However, they could affect other postcopulatory processes, which might be involved in PMPZ isolation, such as sperm storage, longevity or sperm-egg interaction.
Collapse
|
3
|
Ichikawa Y, Matsuzaki M, Mizushima S, Sasanami T. Possible involvement of annexin A6 in preferential sperm penetration in the germinal disk region. REPRODUCTION AND FERTILITY 2022; 3:152-161. [PMID: 35972319 PMCID: PMC9422249 DOI: 10.1530/raf-21-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract During fertilization, avian sperm preferentially penetrate into the perivitelline membrane that covers the germinal disk region where the female nucleus is present. This phenomenon has been observed not only in domestic birds but also in wild birds; however, the mechanisms controlling sperm preference are still unclear. In this study, we investigated the possible involvement of annexin family protein in sperm-egg interaction in Japanese quail. Microscopic examination of fertilized eggs indicated that quail sperm penetration only occurred in the germinal disk region, and sperm localized outside the germinal disk were trapped in the perivitelline membrane. Western blot analysis and immunofluorescence microscopy revealed the presence of annexin A1 and A6 in the oocyte membrane, while annexin A6 localized in the perivitelline space of the germinal disk region. Further, our sperm binding assay using recombinant annexin A6 demonstrated that ejaculated sperm specifically bound to annexin A6 expressed in mammalian cell lines. These results suggest that annexin A6, which is expressed on the surface of oocytes, may function in sperm-egg interaction in the germinal disk region and that this binding may ensure sperm retention on the surface of the egg plasma membrane until fertilization takes place in Japanese quail. Lay summary In bird species, fertilization takes place immediately after ovulation of the egg. Sperm preferentially penetrate a specific area of the egg coating that covers the 'germinal disk region' - this area contains the cell that needs to be fertilized by a sperm. However, since the bird egg is extremely large in size and sperm must reach the 'germinal disk region' to achieve fertilization, it is unclear how this happens. Annexin proteins support fertilization in mammals, and we found that annexin A6 protein exhibits a unique localization in the germinal disk region in the eggs of Japanese quail. To test this interaction, we incubated quail sperm with cells that produced annexin A6 and found that ejaculated sperm bound to the cells. These results suggest that annexin A6 may have a role in the sperm-egg interaction in the germinal disk region in Japanese quail.
Collapse
Affiliation(s)
- Yoshinobu Ichikawa
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Mei Matsuzaki
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, Japan
| | - Shusei Mizushima
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka City, Shizuoka, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka City, Shizuoka, Japan
| |
Collapse
|
4
|
Transport of Acrosomal Enzymes by KIFC1 via the Acroframosomal Cytoskeleton during Spermatogenesis in Macrobrachium rosenbergii (Crustacea, Decapoda, Malacostracea). Animals (Basel) 2022; 12:ani12080991. [PMID: 35454238 PMCID: PMC9027553 DOI: 10.3390/ani12080991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In crustaceans, the sperm have no tail, and spermatogenesis consists only of acrosomal formation and nuclear deformation. The mechanism of acrosome formation during spermatogenesis of Macrobrachium rosenbergii is one of the hot topics in reproductive biology. Many motor proteins are involved in spermatogenesis. KIFC1, as a member of the kinesin family, is one of the motor proteins that our lab has been focusing on. The acrosome contains a large number of acrosomal enzymes for the hydrolysis of the egg envelope. In order to understand how these acrosomal enzymes are transported to the acrosome cap after synthesis, we cloned the KIFC1 and the Acrosin of M. rosenbergii. By detecting the localization of KIFC1 and Acrosin, we found that Mr-KIFC1 may be involved in acrosomal enzyme transport during spermiogenesis of M. rosenbergii. This study is to propose the function of KIFC1 to transport acrosomal enzymes along the acroframosome structure during crustacean spermatogenesis. Abstract The spermatogenesis of crustaceans includes nuclear deformation and acrosome formation. The mechanism of acrosome formation is one focus of reproductive biology. In this study, Macrobrachium rosenbergii was selected as the research object to explore the mechanism of acrosome formation. The acrosome contains a large number of acrosomal enzymes for the hydrolysis of the egg envelope. How these acrosomal enzymes are transported to the acrosomal site after synthesis is the key scientific question of this study. The acroframosome (AFS) structure of caridean sperm has been reported. We hypothesized that acrosomal enzymes may be transported along the AFS framework to the acrosome by motor proteins. To study this hypothesis, we obtained the full-length cDNA sequences of Mr-kifc1 and Mr-Acrosin from the testis of M. rosenbergii. The Mr-kifc1 and Mr-Acrosin mRNA expression levels were highest in testis. We detected the distribution of Mr-KIFC1 and its colocalization with Mr-Acrosin during spermatogenesis by immunofluorescence. The colocalization of Mr-KIFC1 and microtubule indicated that Mr-KIFC1 may participate in sperm acrosome formation and nucleus maturation. The colocalization of Mr-KIFC1 and Mr-Acrosin indicated that Mr-KIFC1 may be involved in Acrosin transport during spermiogenesis of M. rosenbergii. These results suggest that Mr-KIFC1 may be involved in acrosomal enzymes transport during spermiogenesis of M. rosenbergii.
Collapse
|
5
|
Wilburn DB, Kunkel CL, Feldhoff RC, Feldhoff PW, Searle BC. Recurrent Co-Option and Recombination of Cytokine and Three Finger Proteins in Multiple Reproductive Tissues Throughout Salamander Evolution. Front Cell Dev Biol 2022; 10:828947. [PMID: 35281090 PMCID: PMC8904931 DOI: 10.3389/fcell.2022.828947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Reproductive proteins evolve at unparalleled rates, resulting in tremendous diversity of both molecular composition and biochemical function between gametes of different taxonomic clades. To date, the proteomic composition of amphibian gametes is largely a molecular mystery, particularly for Urodeles (salamanders and newts) for which few genomic-scale resources exist. In this study, we provide the first detailed molecular characterization of gametes from two salamander species (Plethodon shermani and Desmognathus ocoee) that are models of reproductive behavior. Long-read PacBio transcriptome sequencing of testis and ovary of both species revealed sex-specific expression of many genes common to vertebrate gametes, including a similar expression profile to the egg coat genes of Xenopus oocytes. In contrast to broad conservation of oocyte genes, major testis transcripts included paralogs of salamander-specific courtship pheromones (PRF, PMF, and SPF) that were confirmed as major sperm proteins by mass spectrometry proteomics. Sperm-specific paralogs of PMF and SPF are likely the most abundant secreted proteins in P. shermani and D. ocoee, respectively. In contrast, sperm PRF lacks a signal peptide and may be expressed in cytoplasm. PRF pheromone genes evolved independently multiple times by repeated gene duplication of sperm PRF genes with signal peptides recovered through recombination with PMF genes. Phylogenetic analysis of courtship pheromones and their sperm paralogs support that each protein family evolved for these two reproductive contexts at distinct evolutionary time points between 17 and 360 million years ago. Our combined phylogenetic, transcriptomic and proteomic analyses of plethodontid reproductive tissues support that the recurrent co-option and recombination of TFPs and cytokine-like proteins have been a novel driving force throughout salamander evolution and reproduction.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Damien B. Wilburn,
| | - Christy L. Kunkel
- Department of Biology, John Carroll University, Cleveland Heights, OH, United States
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Brian C. Searle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Same gene, opposite sexes: Sex-specific divergent expression of a gene required for vertebrate fertilization. Proc Natl Acad Sci U S A 2021; 118:2116001118. [PMID: 34642252 PMCID: PMC8545453 DOI: 10.1073/pnas.2116001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 11/24/2022] Open
|
7
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
8
|
Assersohn K, Brekke P, Hemmings N. Physiological factors influencing female fertility in birds. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202274. [PMID: 34350009 PMCID: PMC8316823 DOI: 10.1098/rsos.202274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/12/2021] [Indexed: 05/30/2023]
Abstract
Fertility is fundamental to reproductive success, but not all copulation attempts result in a fertilized embryo. Fertilization failure is especially costly for females, but we still lack a clear understanding of the causes of variation in female fertility across taxa. Birds make a useful model system for fertility research, partly because their large eggs are easily studied outside of the female's body, but also because of the wealth of data available on the reproductive productivity of commercial birds. Here, we review the factors contributing to female infertility in birds, providing evidence that female fertility traits are understudied relative to male fertility traits, and that avian fertility research has been dominated by studies focused on Galliformes and captive (relative to wild) populations. We then discuss the key stages of the female reproductive cycle where fertility may be compromised, and make recommendations for future research. We particularly emphasize that studies must differentiate between infertility and embryo mortality as causes of hatching failure, and that non-breeding individuals should be monitored more routinely where possible. This review lays the groundwork for developing a clearer understanding of the causes of female infertility, with important consequences for multiple fields including reproductive science, conservation and commercial breeding.
Collapse
Affiliation(s)
- Katherine Assersohn
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Wang Y, Chen F, He J, Xue G, Chen J, Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie 2020; 181:134-144. [PMID: 33333173 DOI: 10.1016/j.biochi.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Fertilization is an essential process that fundamentally impacts fitness. An egg changes dramatically after fertilization mediating the beginning of life, which mainly includes the transformation of the egg envelope via hardening, which is thought to be due to complex reactions involved in the conversion of cellular and molecular. This review highlights the mechanisms of egg envelope hardening in teleost fish. We conclude that the egg envelope hardening might be carried out in two steps. (a) A metalloprotease (alveolin) hydrolyzes the N-terminal proline-glutamine (Pro-Gln) region of zona pellucida (ZP) 1 and (b) triggers intermolecular cross-linking to ZP3 catalyzed by transglutaminase (TGase). The post-fertilization hardening of the egg envelope is an evolutionarily conserved phenomenon across species. We discuss the biochemical function and interaction of some factors reported to be essential to egg envelope hardening in mammalian and nonmammalian species, including metalloprotease, TGase, peroxidase/ovoperoxidase, and other factors (carbohydrate moieties, zinc and Larp6 proteins), and the relevant data suggest that egg envelope hardening is crucial to block polyspermy in internal fertilization, in addition to protecting the developing embryo from mechanical shock and preventing bacterial infection in external fertilization. Increased knowledge of the processes of egg envelope hardening and fertilization is likely to make a remarkable contribution to reproduction and aquaculture.
Collapse
Affiliation(s)
- Yeke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ge Xue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
10
|
Damaziak K, Kieliszek M, Bucław M. Characterization of structure and protein of vitelline membranes of precocial (ring-necked pheasant, gray partridge) and superaltricial (cockatiel parrot, domestic pigeon) birds. PLoS One 2020; 15:e0228310. [PMID: 31999757 PMCID: PMC6992205 DOI: 10.1371/journal.pone.0228310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
Of all the known oviparous taxa, female birds lay the most diverse types of eggs that differ in terms of shape, shell pigmentation, and shell structure. The pigmentation of the shell, the weight of the egg, and the composition of the yolk correlate with environmental conditions and the needs of the developing embryos. In this study, we analyzed the structure and protein composition of the vitelline membrane (VM) of ring-necked pheasant, gray partridge, cockatiel parrot, and domestic pigeon eggs. We found that the VM structure is characteristic of each species and varies depending on whether the species is precocial (ring-necked pheasant and gray partridge) or superaltrical (cockatiel parrot and domestic pigeon). We hypothesize that a multilayer structure of VM is necessary to counteract the aging process of the egg. The multilayer structure of VM is only found in species with a large number of eggs in one clutch and is characterized by a long incubation period. An interesting discovery of this study is the three-layered VM of pheasant and partridge eggs. This shows that the formation of individual layers of VM in specific sections of the hen's reproductive system is not confirmed in other species. The number of protein fractions varied between 19 and 23, with a molecular weight ranging from 15 to 250 kDa, depending on the species. The number of proteins identified in the VM of the study birds' eggs is as follows: chicken-14, ring-necked pheasant-7, gray partridge-10, cockatiel parrot-6, and domestic pigeon-23. The highest number of species-specific proteins (21) was detected in the VM of domestic pigeon. This study is the first to present the structure and protein composition in the VM of ring-necked pheasant, gray partridge, cockatiel parrot, and domestic pigeon eggs. In addition, we analyzed the relationship between the hatching specification of birds and the structure of the VM.
Collapse
Affiliation(s)
- Krzysztof Damaziak
- Department of Animal Breeding, Faculty of Animal Breeding, Bioengineering and Conservation, Institute of Animal Science, University of Life Sciences, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Bucław
- Department of Poultry and Ornamental Bird Breeding, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Szczecin, Poland
| |
Collapse
|
11
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
12
|
Amann RP, Saacke RG, Barbato GF, Waberski D. Measuring Male-to-Male Differences in Fertility or Effects of Semen Treatments. Annu Rev Anim Biosci 2018; 6:255-286. [DOI: 10.1146/annurev-animal-030117-014829] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rupert P. Amann
- Animal Reproduction and Biotechnology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Richard G. Saacke
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Guy F. Barbato
- Biology Program, Stockton University, Galloway, New Jersey 08205, USA
| | - Dagmar Waberski
- Unit for Reproductive Medicine of Clinics/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
13
|
Ichikawa Y, Matsuzaki M, Mizushima S, Sasanami T. Egg Envelope Glycoproteins ZP1 and ZP3 Mediate Sperm-Egg Interaction in the Japanese Quail. J Poult Sci 2017; 54:80-86. [PMID: 32908412 PMCID: PMC7477180 DOI: 10.2141/jpsa.0160088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Fertilization is indispensable for zygotic formation leading to the birth of animals and the species-specific sperm-egg binding thought to be the initial step in this important process. In birds, the oocyte, which encounters the spermatozoa at the time of fertilization, is enclosed in a perivitelline membrane (pvm) constructed of several zona pellucida glycoproteins (ZP proteins: ZP1, ZP2, ZP3, ZP4 and ZPD). The aim of this study was to determine the ZP protein in the pvm responsible for sperm-pvm binding in Japanese quail. We tested the effects of anti-ZP protein antibodies on in vitro sperm perforation in the pvm. The results showed that the anti-ZP1 and ZP3 antibody significantly blocked hole formation by sperm, whereas anti-ZP2, ZP4 and ZPD as well as normal rabbit serum had no such effect. When the sperm acrosome reaction was inhibited in the presence of pertussis toxin, sperm-pvm binding was observed. This sperm-pvm binding was significantly prevented when the purified ZP1 or ZP3 was included in the reaction mixture. Moreover, both digoxigenin-labeled ZP1 and ZP3 were found to interact with the sperm head by immunocytochemical observation. Our results indicate that sperm binding to the pvm is, at least in part, mediated by the interaction of ZP1 and ZP3 with the sperm head during fertilization in Japanese quail.
Collapse
Affiliation(s)
- Yoshinobu Ichikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Mei Matsuzaki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shusei Mizushima
- Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-8555, Japan
| | - Tomohiro Sasanami
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|