1
|
Yuan-Hao W, Ayalew H, Wang J, Wu S, Qiu K, Qi G, Zhang H. N-Carbamylglutamate in ovo feeding improves carcass yield, muscle fiber development, and meat quality in broiler chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8089-8098. [PMID: 38873999 DOI: 10.1002/jsfa.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Insufficient endogenous nutrients in the broiler embryo can lead to muscle gluconeogenesis, which ultimately affects the post-hatching performance of chicks. This study investigated the effects of in ovo feeding (IOF) of N-carbamylglutamate (NCG) on the growth hormones, carcass yield, and meat quality in broilers. Fertile eggs from a 30-week-old Ross 308 breeder flock were divided into three treatment groups: NC (non-injection), SC (100 μL saline-injection), and NCG (2 mg NCG injection). Each group had six replicates, with 70 eggs per replicate during incubation. Injections were administered on the 17.5th day of embryonic development. After hatching, 270 chicks were selected for 42-day rearing for further sampling. RESULTS Chicks in the NCG group had significantly higher body weight (BW) and average daily gain (ADG) at the growing phase, increased growth and testosterone hormone in both feeding phases (21 and 42 days), and improved average daily gain (ADG) and food conversion ratio (FCR) in both grower and entire feeding phases (P < 0.05). Triiodothyronine (T3) and tetraiodothyronine (T4) levels, carcass yield, dressing, drum weight, breast muscle weight, drumstick weights, thighs, pectoralis major, and their part percentage of carcass were improved in the NCG group (P < 0.05), these effects were varied along feeding phases. Moreover, IOF of the NCG also improved pectoralis breast muscle color values at 24 h post mortem (P < 0.05). CONCLUSION These results suggest that NCG injection at the late embryonic age of broiler enhances growth performance and meat quality throughout the lifespan and this can probably be attributed to an increase in thyroid and testosterone hormones, indicating potential involvement in metabolic and nutrient partitioning pathway regulation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wang Yuan-Hao
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Habtamu Ayalew
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shugeng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanghai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Guo B, Dai Z, Chen R, Liu J, Shi Z. Enhancing gosling growth and secretion of somatotrophic and thyrotrophic axis hormones through egg turning during incubation. Br Poult Sci 2023; 64:122-128. [PMID: 36083128 DOI: 10.1080/00071668.2022.2121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Growth performance of Yangzhou geese hatched from eggs with turning angles of 50° or 70° was evaluated in association with serum hormones and somatotrophic gene mRNA expression.2. Egg turning at 70° significantly (P< 0.05) increased hatchability, gosling quality and hatching weight. Gosling post-hatch body weight, leg and breast muscle weight in the 70° turning group was significantly heavier until 50 d of age.3. Serum concentrations of GH were significantly higher until 30 d of age in the 70° turning group goslings, and those of IGF-I and T3 were higher from hatching to 50 d of age.4. The mRNA expression of GHRH, pituitary GH, liver and leg muscle IGF-I were all significantly higher at 1 and 30 d of age after hatch, but not at 70 d after hatch, in the 70° turning group.5. Egg turning at 70° during incubation improves embryo and gosling quality and growth performance through up-regulation of gene expression and secretion of somatotrophic axis hormones, GHRH, GH and IGF-I, as well as T3.
Collapse
Affiliation(s)
- B Guo
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Z Dai
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - R Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - J Liu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Z Shi
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory of Animal Improvement and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Koşum N, Yücel B, Kandemir Ç, Taşkın T, Duru ME, Küçükaydın S, Margaoan R, Cornea-Cipcigan M. Chemical composition and androgenic effect of bee drone larvae (Apilarnil) for goat male kids. Chem Biodivers 2022; 19:e202200548. [PMID: 35770836 DOI: 10.1002/cbdv.202200548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022]
Abstract
Present study aimed to establish the stimulatory effects of bee drone larvae (BDL) on the androgenic effects and growth performance of goat male kids (GMK). The effects of BDL on growth and testosterone hormone levels were investigated in Saanen male kids. A total of 26 Saanen male kids (13 heads control, 13 heads treatment groups) were used for determining the effects of BDL 60 days after the weaning period. BDL was obtained from "good beekeeping practices" hives. Hormone levels, growth trials, testes characteristics, and body measurements were determined every 14 days on the days 75, 90, 105, 120, and 135 of the trial. The increasing level of testosterone hormone in the treatment group on 135 days strengthened the hypothesis that the BDL could have greater effects in case of more application that is expensive and considering the time of maturity of Saanen GMK. The lipid composition of BDL was identified by GC-MS. Oleic acid (64.75%) and palmitic acid (26.08%) were the dominant lipid compounds of BDL. Additionally, the phenolic/organic acid profile investigated by HPLC-DAD revealed that trans -aconitic acid (11.20±0.32 μg/g) and fumaric acid (5.03±0.41 μg/g) were found as major compounds in BDL.
Collapse
Affiliation(s)
- Nedim Koşum
- Ege University: Ege Universitesi, Department of Animal Sciences, 35100 BORNOVA, İZMİR, TURKEY
| | - Banu Yücel
- Ege Universitesi, Department of Animal Science, 35100 Bornova, Izmir, TURKEY
| | - Çağrı Kandemir
- Ege Universitesi, Department of Animal Science, 35100 BORNOVA, Izmir, TURKEY
| | - Turgay Taşkın
- Ege Universitesi, Department of Animal Science, 35100 BORNOVA, Izmir, TURKEY
| | - Mehmet Emin Duru
- Mugla Sitki Kocman Universitesi, Department of Chemistry, 48000 Kötekli, Mugla, TURKEY
| | - Selçuk Küçükaydın
- Mugla Sitki Kocman Universitesi, Department of Medical Services and Techniques, 48000 Kötekli, Mugla, TURKEY
| | - Rodica Margaoan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Biotechnology and Microbiology, Calea Manastur 3-5, USAMV, cladirea-ICHAT, 400372, Cluj-Napoca, ROMANIA
| | - Mihaiela Cornea-Cipcigan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca Faculty of Horticulture: Universitatea de Stiinte Agricole si Medicina Veterinara Cluj-Napoca Facultatea de Horticultura, Horticulture and Landscaping, Calea Manastur 3-5, Cluj-Napoca, ROMANIA
| |
Collapse
|
4
|
Zakharenko МО, Cheverda ІМ, Kurbatova ІМ. Effects of gonadectomy on clinical-hematological, metabolic and hormone conditions of cockerels. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Gonadectomy (caponization) of cockerels is an important way of increasing their productivity, improving the quality and taste properties of the meat, and obtaining dietary products. The objective of the study was the influence of gonadectomy of cockerels on their clinical condition, morphological composition of blood, hemoglobin content and anabolism in the tissues, their productivity and chemical content of the muscles. In the experiment, we used 30 Adler silver cockerels aged 4 weeks, which were divided into two groups: control (intact) and experimental (gonadectomized) according to the analogue principle, with 15 individuals in each. The experiment lasted for 185 days, including the main period of 175 days. We determined that the body temperature of cockerels after gonadectomy increased as early as days one and three. In the blood of gonadectomized cockerels, the number of leukocytes decreased by 36.3%, thrombocytes – by 24.7%, while hemoglobin concentration, numbers of heterophils, eosinophils, basophils, monocytes and lymphocytes did not change compared with the intact individuals. On days 20 and 185 of the experiment, the concentration of testosterone in the blood plasma of gonadectomized cockerels was lower respectively by 57.1% and 53.1%, whereas no differences were found prior to gonadectomy and on the third day of the experiment. We determined increase in uric acid concentration and decrease in the level of ionizing calcium in blood plasma of gonadectomized cockerels compared with intact individuals, while the content of cortisol, glucose, total protein, triglycerides, cholesterol, total calcium and inorganic phosphorus, and also activities of alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase did not change. Live weight of gonadectomized cockerels in the period from 45 to 105 days of the raising did not change, and was higher by 10.4–17.0% from day 115 to 145, and further remained not different from the control. Thoracic muscles of gonadectomized cockerels contained 1.8 times more fat, while the levels of moisture, dry matter, protein and ash in thoracic and thigh muscles did not change. The conducted studies have revealed the effect of gonadectomy of roosters on clinical-hematological parameters, metabolic processes, productivity of birds and chemical composition of muscles and may be used to improve the production of chicken meat with high dietary and taste properties.
Collapse
|
5
|
Vaccaro LA, Porter TE, Ellestad LE. Effects of genetic selection on activity of corticotropic and thyrotropic axes in modern broiler chickens. Domest Anim Endocrinol 2022; 78:106649. [PMID: 34418578 DOI: 10.1016/j.domaniend.2021.106649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
Commercial selection for meat-type (broiler) chickens has produced economically valuable birds with fast growth rates, enhanced muscle mass, and highly efficient feed utilization. The physiological changes that account for this improvement and unintended consequences associated with them remain largely unexplored, despite their potential to guide further advancements in broiler production efficiency. To identify effects of genetic selection on hormonal signaling in the adrenocorticotropic and thyrotropic axes, gene expression in muscle and liver and post-hatch circulating hormone concentrations were measured in legacy [Athens Canadian Random Bred (ACRB)] and modern (Ross 308) male broilers between embryonic days (e) 10 and e18 and post-hatch days (d) 10 and d40. No interactive effects or main effects of line were observed for adrenocorticotropic gene expression during either developmental period, although age effects appeared for corticosteroid-binding globulin in liver during embryogenesis and post-hatch and glucocorticoid receptor in both tissues post-hatch. There was a main line effect for circulating corticosterone, with levels in ACRB greater than those in Ross. Several thyrotropic genes exhibited line-by-age interactions during embryonic or post-hatch development. In liver, embryonic expression of thyroid hormone receptor beta was greater in ACRB on e12, and deiodinase 3 (DIO3) levels were greater in Ross on e14 and e16. In juvenile liver, deiodinase 2 (DIO2) expression was greater in ACRB on d10 but greater in Ross on d20, while DIO3 was higher in ACRB on d30 and d40. Levels of thyroid hormone receptor alpha mRNA exhibited a main line effect, with levels greater in ACRB juvenile breast muscle. Several thyrotropic genes exhibited main age effects, including DIO2 and DIO3 in embryonic breast muscle, thyroid hormone receptor alpha and thyroid hormone receptor beta in post-hatch liver, and DIO2 in post-hatch breast muscle. Circulating triiodothyronine displayed a main line effect, with levels in Ross significantly reduced as compared to ACRB. These findings suggest that in modern broilers, a decrease in levels of hormones that control basal metabolism triiodothyronine and the stress response circulating corticosterone, as well as altered expression of genes regulating thyroid hormone activity, could contribute to lower heat production, reduced stress response, and altered nutrient partitioning, leading to more efficient feed utilization and faster, more productive growth.
Collapse
Affiliation(s)
- L A Vaccaro
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - L E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
6
|
Givisiez PEN, Moreira Filho ALB, Santos MRB, Oliveira HB, Ferket PR, Oliveira CJB, Malheiros RD. Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poult Sci 2020; 99:6774-6782. [PMID: 33248593 PMCID: PMC7705034 DOI: 10.1016/j.psj.2020.09.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.
Collapse
Affiliation(s)
| | | | - Maylane R B Santos
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Heraldo B Oliveira
- Department of Animal Science, Federal University of Pernambuco, Recife, Brazil
| | - Peter R Ferket
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| | - Celso J B Oliveira
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Ramon D Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| |
Collapse
|
7
|
Implications of dietary macronutrients for growth and metabolism in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001602] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Zhang L, Wu S, Wang J, Qiao X, Yue H, Yao J, Zhang H, Qi G. Changes of Plasma Growth Hormone, Insulin-Like Growth Factors-I, Thyroid Hormones, and Testosterone Concentrations in Embryos and Broiler Chickens Incubated under Monochromatic Green Light. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2014.3266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Devlin RH, Sakhrani D, White S, Overturf K. Effects of domestication and growth hormone transgenesis on mRNA profiles in rainbow trout (Oncorhynchus mykiss)1. J Anim Sci 2013; 91:5247-58. [PMID: 24045478 DOI: 10.2527/jas.2013-6612] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- R. H. Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - D. Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - S. White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada, V7V 1N6
| | - K. Overturf
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059-F National Fish Hatchery Road, Hagerman, ID 83332
| |
Collapse
|
10
|
Wu G, Siegel PB, Gilbert ER, Yang N, Wong EA. Expression profiles of somatotropic axis genes in lines of chickens divergently selected for 56-day body weight. Anim Biotechnol 2011; 22:100-10. [PMID: 21500111 DOI: 10.1080/10495398.2011.566450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to evaluate mRNA expression of somatotropic axis genes in chickens divergently selected for high (HWS) or low (LWS) body weight at 56 days of age. Gene expression was measured on days 16, 18, and 20 of incubation, day of hatch, and days 3, 7, 28, and 56 posthatch. Pituitary growth hormone mRNA raised from prehatch to posthatch, with a similar profile in both lines. Liver growth hormone receptor (GHR) mRNA was high during embryogenesis, declined to low levels at day 3 posthatch, and then increased to day 56. Expression of liver insulin-like growth factor 1 (IGF-1) mRNA increased sharply by day 28 in line HWS and day 56 in line LWS. Pectoralis major muscle GHR mRNA was greater in line LWS than HWS. Muscle IGF-1 mRNA declined during embryogenesis, increased posthatch, and declined after day 7. IGF-1 mRNA was 1,000-fold greater in embryonic muscle than embryonic liver. Muscle IGF-1 receptor mRNA was greater in line LWS than HWS posthatch. These results demonstrate that genetic selection for high or low body weight has altered the expression profiles of somatotropic axis genes in a line-, age-, and tissue-specific manner.
Collapse
Affiliation(s)
- Guiqin Wu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
11
|
Shao Y, Wu C, Li J, Zhao C. The Effects of Different Caponization Age on Growth Performance and Blood Parameters in Male Tibetan Chicken. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajava.2009.228.236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, Goh B. Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proc Natl Acad Sci U S A 2009; 106:3047-52. [PMID: 19223591 PMCID: PMC2651260 DOI: 10.1073/pnas.0809798106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Indexed: 11/18/2022] Open
Abstract
Domestication has been extensively used in agricultural animals to modify phenotypes such as growth rate. More recently, transgenesis of growth factor genes [primarily growth hormone (GH)] has also been explored as a rapid approach to accelerating performance of agricultural species. Growth rates of many fishes respond dramatically to GH gene transgenesis, whereas genetic engineering of domestic mammalian livestock has resulted in relatively modest gains. The most dramatic effects of GH transgenesis in fish have been seen in relatively wild strains that have undergone little or no selection for enhanced growth, whereas genetic modification of livestock necessarily has been performed in highly domesticated strains that already possess very rapid growth. Such fast-growing domesticates may be refractory to further stimulation if the same regulatory pathways are being exploited by both genetic approaches. By directly comparing gene expression in wild-type, domestic, and GH transgenic strains of coho salmon, we have found that domestication and GH transgenesis are modifying similar genetic pathways. Genes in many different physiological pathways show modified expression in domestic and GH transgenic strains relative to wild-type, but effects are strongly correlated. Genes specifically involved in growth regulation (IGF1, GHR, IGF-II, THR) are also concordantly regulated in domestic and transgenic fish, and both strains show elevated levels of circulating IGF1. Muscle expression of GH in nontransgenic strains was found to be elevated in domesticated fish relative to wild type, providing a possible mechanism for growth enhancement. These data have implications for genetic improvement of existing domesticated species and risk assessment and regulation of emerging transgenic strains.
Collapse
Affiliation(s)
- Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada V7V 1N6.
| | | | | | | | | |
Collapse
|
13
|
Ghrelin: A multifunctional hormone in non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:109-28. [DOI: 10.1016/j.cbpa.2007.12.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/28/2022]
|
14
|
|
15
|
Identification of Immunoreactive Ghrelin and its mRNA in the Oviduct of Laying Japanese Quail, Coturnix japonica. J Poult Sci 2005. [DOI: 10.2141/jpsa.42.291] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|