1
|
Kuroi K, Tsukamoto T, Honda N, Sudo Y, Furutani Y. Concerted primary proton transfer reactions in a thermophilic rhodopsin studied by time-resolved infrared spectroscopy at high temperature. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148980. [PMID: 37080329 DOI: 10.1016/j.bbabio.2023.148980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The primary proton transfer reactions of thermophilic rhodopsin, which was first discovered in an extreme thermophile, Thermus thermophilus JL-18, were investigated using time-resolved Fourier transform infrared spectroscopy at various temperatures ranging from 298 to 343 K (25 to 70 °C) and proton transport activity analysis. The analyses were performed using counterion (D95E, D95N, D229E, and D229N) and proton donor mutants (E106D and E106Q) as well. First, the initial proton transfer from the protonated retinal Schiff base (PRSB) to D95 was identified. The temperature dependency showed that the proton transfer reaction in the intermediate states dramatically changed above 318 K (45 °C). In addition, the proton transfer reaction correlated well with the structural change from turn to β-strand in the protein moiety, suggesting that this step may be regulated by the rigidity of the loop region. We also elucidated that the proton transfer reaction from proton donor E106 to the retinal Schiff base occurred synchronously with the primary proton transfer from the PRSB to D95. Surprisingly, we discovered that the direction of proton transfer was regulated by the secondary counterion, D229. Comparative analysis of Gloeobacter rhodopsin from the mesophile, Gloeobacter violaceus, highlighted that the primary proton transfer reactions in thermophilic rhodopsin were optimized at high temperatures partly due to the specific turn to β-strand structural change. This was not observed in Gloeobacter rhodopsin and other related proteins such as bacteriorhodopsin.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Naoya Honda
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan; Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| |
Collapse
|
2
|
Kishi KE, Kato HE. Pump-like channelrhodopsins: Not just bridging the gap between ion pumps and ion channels. Curr Opin Struct Biol 2023; 79:102562. [PMID: 36871323 DOI: 10.1016/j.sbi.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
Channelrhodopsins are microbial rhodopsins that work as light-gated ion channels. Their importance has become increasingly recognized due to their ability to control the membrane potential of specific cells in a light-dependent manner. This technology, termed optogenetics, has revolutionized neuroscience, and numerous channelrhodopsin variants have been isolated or engineered to expand the utility of optogenetics. Pump-like channelrhodopsins (PLCRs), one of the recently discovered channelrhodopsin subfamilies, have attracted broad attention due to their high sequence similarity to ion-pumping rhodopsins and their distinct properties, such as high light sensitivity and ion selectivity. In this review, we summarize the current understanding of the structure-function relationships of PLCRs and discuss the challenges and opportunities of channelrhodopsin research.
Collapse
Affiliation(s)
- Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan. https://twitter.com/K_E_Kishi
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
3
|
Furutani Y, Yang CS. Ion-transporting mechanism in microbial rhodopsins: Mini-review relating to the session 5 at the 19th International Conference on Retinal Proteins. Biophys Physicobiol 2023; 20:e201005. [PMID: 38362333 PMCID: PMC10865854 DOI: 10.2142/biophysico.bppb-v20.s005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Sudo Y, Terakita A, Kandori H. Editorial: Forewords to the special issue "Recent advances in retinal protein research". Biophys Physicobiol 2023; 20:e201001. [PMID: 38362328 PMCID: PMC10865873 DOI: 10.2142/biophysico.bppb-v20.s001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yuki Sudo
- Medicine, Dentistry and Pharmaceutical Sciences, Institute of Academic and Research, Okayama University, Kita-ku, Okayama 700-8530, Japan
| | - Akihisa Terakita
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Kandori
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
5
|
Arikawa S, Sugimoto T, Okitsu T, Wada A, Katayama K, Kandori H, Kawamura I. Solid-state NMR for the characterization of retinal chromophore and Schiff base in TAT rhodopsin embedded in membranes under weakly acidic conditions. Biophys Physicobiol 2023; 20:e201017. [PMID: 38362323 PMCID: PMC10865839 DOI: 10.2142/biophysico.bppb-v20.s017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
TAT rhodopsin extracted from the marine bacterium SAR11 HIMB114 has a characteristic Thr-Ala-Thr motif and contains both protonated and deprotonated states of Schiff base at physiological pH conditions due to the low pKa. Here, using solid-state NMR spectroscopy, we investigated the 13C and 15N NMR signals of retinal in only the protonated state of TAT in the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho (1'-rac-glycerol) (POPE/POPG) membrane at weakly acidic conditions. In the 13C NMR spectrum of 13C retinal-labeled TAT rhodopsin, the isolated 14-13C signals of 13-trans/15-anti and 13-cis/15-syn isomers were observed at a ratio of 7:3. 15N retinal protonated Schiff base (RPSB) had a significantly higher magnetic field resonance at 160 ppm. In 15N RPSB/λmax analysis, the plot of TAT largely deviated from the trend based on the retinylidene-halide model compounds and microbial rhodopsins. Our findings indicate that the RPSB of TAT forms a very weak interaction with the counterion.
Collapse
Affiliation(s)
- Sui Arikawa
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Takashi Okitsu
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
6
|
Selvaraj MK, Thakur A, Kumar M, Pinnaka AK, Suri CR, Siddhardha B, Elumalai SP. Ion-pumping microbial rhodopsin protein classification by machine learning approach. BMC Bioinformatics 2023; 24:29. [PMID: 36707759 PMCID: PMC9881276 DOI: 10.1186/s12859-023-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhodopsin is a seven-transmembrane protein covalently linked with retinal chromophore that absorbs photons for energy conversion and intracellular signaling in eukaryotes, bacteria, and archaea. Haloarchaeal rhodopsins are Type-I microbial rhodopsin that elicits various light-driven functions like proton pumping, chloride pumping and Phototaxis behaviour. The industrial application of Ion-pumping Haloarchaeal rhodopsins is limited by the lack of full-length rhodopsin sequence-based classifications, which play an important role in Ion-pumping activity. The well-studied Haloarchaeal rhodopsin is a proton-pumping bacteriorhodopsin that shows promising applications in optogenetics, biosensitized solar cells, security ink, data storage, artificial retinal implant and biohydrogen generation. As a result, a low-cost computational approach is required to identify Ion-pumping Haloarchaeal rhodopsin sequences and its subtype. RESULTS This study uses a support vector machine (SVM) technique to identify these ion-pumping Haloarchaeal rhodopsin proteins. The haloarchaeal ion pumping rhodopsins viz., bacteriorhodopsin, halorhodopsin, xanthorhodopsin, sensoryrhodopsin and marine prokaryotic Ion-pumping rhodopsins like actinorhodopsin, proteorhodopsin have been utilized to develop the methods that accurately identified the ion pumping haloarchaeal and other type I microbial rhodopsins. We achieved overall maximum accuracy of 97.78%, 97.84% and 97.60%, respectively, for amino acid composition, dipeptide composition and hybrid approach on tenfold cross validation using SVM. Predictive models for each class of rhodopsin performed equally well on an independent data set. In addition to this, similar results were achieved using another machine learning technique namely random forest. Simultaneously predictive models performed equally well during five-fold cross validation. Apart from this study, we also tested the own, blank, BLAST dataset and annotated whole-genome rhodopsin sequences of PWS haloarchaeal isolates in the developed methods. The developed web server ( https://bioinfo.imtech.res.in/servers/rhodopred ) can identify the Ion Pumping Haloarchaeal rhodopsin proteins and their subtypes. We expect this web tool would be useful for rhodopsin researchers. CONCLUSION The overall performance of the developed method results show that it accurately identifies the Ionpumping Haloarchaeal rhodopsin and their subtypes using known and unknown microbial rhodopsin sequences. We expect that this study would be useful for optogenetics, molecular biologists and rhodopsin researchers.
Collapse
Affiliation(s)
- Muthu Krishnan Selvaraj
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anamika Thakur
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Manoj Kumar
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anil Kumar Pinnaka
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Chander Raman Suri
- grid.418099.dBiosensor Department, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Busi Siddhardha
- grid.412517.40000 0001 2152 9956Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Senthil Prasad Elumalai
- grid.418099.dBiochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| |
Collapse
|
7
|
Pedraza-González L, Barneschi L, Marszałek M, Padula D, De Vico L, Olivucci M. Automated QM/MM Screening of Rhodopsin Variants with Enhanced Fluorescence. J Chem Theory Comput 2023; 19:293-310. [PMID: 36516450 DOI: 10.1021/acs.jctc.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a computational protocol for the fast and automated screening of excited-state hybrid quantum mechanics/molecular mechanics (QM/MM) models of rhodopsins to be used as fluorescent probes based on the automatic rhodopsin modeling protocol (a-ARM). Such "a-ARM fluorescence screening protocol" is implemented through a general Python-based driver, PyARM, that is also proposed here. The implementation and performance of the protocol are benchmarked using different sets of rhodopsin variants whose absorption and, more relevantly, emission spectra have been experimentally measured. We show that, despite important limitations that make unsafe to use it as a black-box tool, the protocol reproduces the observed trends in fluorescence and it is capable of selecting novel potentially fluorescent rhodopsins. We also show that the protocol can be used in mechanistic investigations to discern fluorescence enhancement effects associated with a near degeneracy of the S1/S2 states or, alternatively, with a barrier generated via coupling of the S0/S1 wave functions.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Leonardo Barneschi
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Michał Marszałek
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiaǹskiego 27, 50-370 Wrocław, Poland
| | - Daniele Padula
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy.,Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
8
|
Pedraza-González L, Barneschi L, Padula D, De Vico L, Olivucci M. Evolution of the Automatic Rhodopsin Modeling (ARM) Protocol. Top Curr Chem (Cham) 2022; 380:21. [PMID: 35291019 PMCID: PMC8924150 DOI: 10.1007/s41061-022-00374-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 10/27/2022]
Abstract
In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy.
| | - Leonardo Barneschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via Aldo Moro 2, 53100, Siena, Italy. .,Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
9
|
Kishi KE, Kim YS, Fukuda M, Inoue M, Kusakizako T, Wang PY, Ramakrishnan C, Byrne EFX, Thadhani E, Paggi JM, Matsui TE, Yamashita K, Nagata T, Konno M, Quirin S, Lo M, Benster T, Uemura T, Liu K, Shibata M, Nomura N, Iwata S, Nureki O, Dror RO, Inoue K, Deisseroth K, Kato HE. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 2022; 185:672-689.e23. [PMID: 35114111 PMCID: PMC7612760 DOI: 10.1016/j.cell.2022.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.
Collapse
Affiliation(s)
- Koichiro E Kishi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Masahiro Fukuda
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Masatoshi Inoue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eamon F X Byrne
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Elina Thadhani
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Toshiki E Matsui
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Takashi Nagata
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masae Konno
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Maisie Lo
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tyler Benster
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Tomoko Uemura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Kehong Liu
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan; High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Sakyo, Japan; RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Keiichi Inoue
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; CNC Program, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Hideaki E Kato
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; FOREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| |
Collapse
|
10
|
Kawamura I, Seki H, Tajima S, Makino Y, Shigeta A, Okitsu T, Wada A, Naito A, Sudo Y. Structure of a retinal chromophore of dark-adapted middle rhodopsin as studied by solid-state nuclear magnetic resonance spectroscopy. Biophys Physicobiol 2021; 18:177-185. [PMID: 34434690 PMCID: PMC8354847 DOI: 10.2142/biophysico.bppb-v18.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Middle rhodopsin (MR) found from the archaeon Haloquadratum walsbyi is evolutionarily located between two different types of rhodopsins, bacteriorhodopsin (BR) and sensory rhodopsin II (SRII). Some isomers of the chromophore retinal and the photochemical reaction of MR are markedly different from those of BR and SRII. In this study, to obtain the structural information regarding its active center (i.e., retinal), we subjected MR embedded in lipid bilayers to solid-state magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The analysis of the isotropic 13C chemical shifts of the retinal chromophore revealed the presence of three types of retinal configurations of dark-adapted MR: (13-trans, 15-anti (all-trans)), (13-cis, 15-syn), and 11-cis isomers. The higher field resonance of the 20-C methyl carbon in the all-trans retinal suggested that Trp182 in MR has an orientation that is different from that in other microbial rhodopsins, owing to the changes in steric hindrance associated with the 20-C methyl group in retinal. 13Cζ signals of Tyr185 in MR for all-trans and 13-cis, 15-syn isomers were discretely observed, representing the difference in the hydrogen bond strength of Tyr185. Further, 15N NMR analysis of the protonated Schiff base corresponding to the all-trans and 13-cis, 15-syn isomers in MR showed a strong electrostatic interaction with the counter ion. Therefore, the resulting structural information exhibited the property of stable retinal conformations of dark-adapted MR.
Collapse
Affiliation(s)
- Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Hayato Seki
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Seiya Tajima
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yoshiteru Makino
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan.,Present address: Graduate School of Medicine, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Tomida S, Kitagawa S, Kandori H, Furutani Y. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. J Phys Chem B 2021; 125:8331-8341. [PMID: 34292728 DOI: 10.1021/acs.jpcb.1c01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heliorhodopsin (HeR) is a new class of the rhodopsin family discovered in 2018 through functional metagenomic analysis (named 48C12). Similar to typical microbial rhodopsins, HeR possesses seven transmembrane (TM) α-helices and an all-trans-retinal covalently bonded to the lysine residue on TM7 via a protonated Schiff base. Remarkably, the HeR membrane topology is inverted compared with that of typical microbial rhodopsins. The X-ray crystal structure of HeR 48C12 was elucidated after the first report on a HeR variant from Thermoplasmatales archaeon SG8-52-1, which revealed the water-mediated hydrogen-bonding network connected to the Schiff base region in the cytoplasmic side. Herein, low-temperature light-induced FTIR spectroscopic analyses of HeR 48C12 and 15N isotopically labeled proteins were used to elucidate the structural changes during retinal photoisomerization. N-D stretching vibrations of the protonated retinal Schiff base (PRSB) at 2286 and 2302 cm-1 in the dark state, and 2239 and 2252 cm-1 in the K intermediate were observed. The frequency changes indicated that the hydrogen bond of PRSB strengthens upon photoisomerization in HeR. Moreover, O-D stretching vibration frequencies of the internal water molecules indicate that the hydrogen-bonding strength decreases concomitantly. Therefore, the PRSB hydrogen bond responds to photoisomerization in an opposite way to the hydrogen-bonding network involving water molecules. No frequency changes of the indole N-H or N-D stretching vibrations of tryptophan residues were observed upon photoisomerization, suggesting that all tryptophan residues in the HeR 48C12 maintained the hydrogen-bonding strengths in the K intermediate. These results provide insights into the molecular mechanism of the energy storage and propagation upon retinal photoisomerization in HeR.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
12
|
Hayashi M, Kojima K, Sudo Y, Yamashita A. An optogenetic assay method for electrogenic transporters using Escherichia coli co-expressing light-driven proton pump. Protein Sci 2021; 30:2161-2169. [PMID: 34216503 DOI: 10.1002/pro.4154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
In organisms, nutrients and wastes move across the cellular membrane, in which membrane-embedded transporters facilitate and inhibit the movement. Despite the physiological significances, the currently used assay methods for transporter activities require tedious preparation and analytical processes. In this study, we report the isotope-free and label-free measurement system for the transport activities of electrogenic transporters. In the system, two molecules, a light-driven inward proton pump rhodopsin, xenorhodopsin (XeR), and a representative of an electrogenic transporter, an oxalate transporter (OxlT), were co-expressed in Escherichia coli cells. The light illumination of the cells co-expressing XeR and OxlT showed an increase in the pH of the bulk solution and that the extent of the pH change is significantly enhanced by adding the oxalate, suggesting the light-induced inward proton transport by XeR coupled to the negative electrogenic transport by OxlT. Such a pH increase was dependent on the oxalate concentration, but not on the XeR expression level. Of note, pH increase was not observed for the nonfunctional mutants of OxlT, R272A, and K355Q, supporting the validity of the system. Thus, we successfully developed an optogenetic assay method for electrogenic transporters using E. coli co-expressing light-driven proton pump.
Collapse
Affiliation(s)
- Masahiro Hayashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
How does the skin sense sun light? An integrative view of light sensing molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Tutol JN, Lee J, Chi H, Faizuddin FN, Abeyrathna SS, Zhou Q, Morcos F, Meloni G, Dodani SC. A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride. Chem Sci 2021; 12:5655-5663. [PMID: 34163777 PMCID: PMC8179538 DOI: 10.1039/d0sc06061e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli. This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The binding of chloride tunes the pK a of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single-cell fluorescence microscopy experiments with E. coli, expressing a GR1 fusion with a cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of changes in extracellular chloride at the membrane. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin-based fluorescent chloride sensors with improved properties for cellular applications and learn how proteins can evolve and adapt to bind anions in water.
Collapse
Affiliation(s)
- Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jessica Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Hsichuan Chi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Farah N Faizuddin
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Qin Zhou
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas Richardson TX 75080 USA
- Department of Bioengineering, The University of Texas at Dallas Richardson TX 75080 USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
15
|
Identification of intermediate conformations in the photocycle of the light-driven sodium-pumping rhodopsin KR2. J Biol Chem 2021; 296:100459. [PMID: 33639164 PMCID: PMC8039564 DOI: 10.1016/j.jbc.2021.100459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The light-driven rhodopsin KR2 transports Na+via the M- and O-states. However, the mechanisms by which the retinal regulates Na+ pumping is unknown, in part because KR2 adopts both pentamer and monomer forms in crystal structures and in part because these structures show differences in the protein conformation near the Schiff base, even when they are of the same intermediate state within the photocycle. A particular open question is the nature of the H-bond networks and protonation state in the active site, including Asp116. Here, we analyze the protonation state and the absorption wavelength for each crystal structure, using a quantum mechanical/molecular mechanical approach. In the pentamer ground state, the calculated absorption wavelength reproduces the experimentally measured absorption wavelength (530 nm). The analysis also shows that ionized Asp116 is stabilized by the H-bond donations of both Ser70 and a cluster of water molecules. The absorption wavelength of 400 nm in the M-state can be best reproduced when the two O atoms of Asp116 interact strongly with the Schiff base, as reported in one of the previous monomer ground state structures. The absorption wavelengths calculated for the two Na+-incorporated O-state structures are consistent with the measured absorption wavelength (∼600 nm), which suggests that two conformations represent the O-state. These results may provide a key to designing enhanced tools in optogenetics.
Collapse
|
16
|
Tsujimura M, Ishikita H. Insights into the Protein Functions and Absorption Wavelengths of Microbial Rhodopsins. J Phys Chem B 2020; 124:11819-11826. [PMID: 33236904 DOI: 10.1021/acs.jpcb.0c08910] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Using a quantum mechanical/molecular mechanical approach, the absorption wavelength of the retinal Schiff base was calculated based on 13 microbial rhodopsin crystal structures. The results showed that the protein electrostatic environment decreases the absorption wavelength significantly in the cation-conducting rhodopsin but only slightly in the sensory rhodopsin. Among the microbial rhodopsins with different functions, the differences in the absorption wavelengths are caused by differences in the arrangement of the charged residues at the retinal Schiff base binding moiety, namely, one or two counterions at the three common positions. Among the microbial rhodopsins with similar functions, the differences in the polar residues at the retinal Schiff base binding site are responsible for the differences in the absorption wavelengths. Counterions contribute to an absorption wavelength shift of 50-120 nm, whereas polar groups contribute to a shift of up to ∼10 nm. It seems likely that protein function is directly associated with the absorption wavelength in microbial rhodopsins.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
17
|
Ueta T, Kojima K, Hino T, Shibata M, Nagano S, Sudo Y. Applicability of Styrene-Maleic Acid Copolymer for Two Microbial Rhodopsins, RxR and HsSRI. Biophys J 2020; 119:1760-1770. [PMID: 33086044 DOI: 10.1016/j.bpj.2020.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
The membrane-embedded protein rhodopsin is widely produced in organisms as a photoreceptor showing a variety of light-dependent biological functions. To investigate its molecular features, rhodopsin is often extracted from cellular membrane lipids by a suitable detergent as "micelles." The extracted protein is purified by column chromatography and then is often reconstituted into "liposomes" by removal of the detergent. The styrene-maleic acid ("SMA") copolymer spontaneously forms nanostructures containing lipids without detergent. In this study, we applied SMA to characterize two microbial rhodopsins, a thermally stable rhodopsin, Rubrobacter xylanophilus rhodopsin (RxR), and an unstable one, Halobacterium salinarum sensory rhodopsin I (HsSRI), and evaluated their physicochemical properties in SMA lipid particles compared with rhodopsins in micelles and in liposomes. Those two rhodopsins were produced in Escherichia coli cells and were successfully extracted from the membrane by the addition of SMA (5 w/v %) without losing their visible color. Analysis by dynamic light scattering revealed that RxR in SMA lipid particles (RxR-SMA) formed a discoidal structure with a diameter of 54 nm, which was 10 times smaller than RxR in phosphatidylcholine liposomes. The small particle size of RxR-SMA allowed us to obtain scattering-less visible spectra with a high signal-to-noise ratio similar to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside. High-speed atomic force microscopy revealed that a single particle contained an average of 4.1 trimers of RxR (12.3 monomers). In addition, RxR-SMA showed a fast cyclic photoreaction (k = 13 s-1) comparable with RxR in phosphatidylcholine liposomes (17 s-1) but not to RxR in detergent micelles composed of n-dodecyl-β-D-maltoside (0.59 s-1). By taking advantage of SMA, we determined the dissociation constant (Kd) of chloride for HsSRI as 34 mM. From these results, we conclude that SMA is a useful molecule forming a membrane-mimicking assembly for microbial rhodopsins having the advantages of detergents and liposomes.
Collapse
Affiliation(s)
- Tetsuya Ueta
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Keiichi Kojima
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Mikihiro Shibata
- Nano Life Science Institute (WPI-NanoLSI), and High-Speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Yuki Sudo
- Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan.
| |
Collapse
|
18
|
Besaw JE, Ou WL, Morizumi T, Eger BT, Sanchez Vasquez JD, Chu JHY, Harris A, Brown LS, Miller RJD, Ernst OP. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J Biol Chem 2020; 295:14793-14804. [PMID: 32703899 DOI: 10.1074/jbc.ra120.014118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins are versatile and ubiquitous retinal-binding proteins that function as light-driven ion pumps, light-gated ion channels, and photosensors, with potential utility as optogenetic tools for altering membrane potential in target cells. Insights from crystal structures have been central for understanding proton, sodium, and chloride transport mechanisms of microbial rhodopsins. Two of three known groups of anion pumps, the archaeal halorhodopsins (HRs) and bacterial chloride-pumping rhodopsins, have been structurally characterized. Here we report the structure of a representative of a recently discovered third group consisting of cyanobacterial chloride and sulfate ion-pumping rhodopsins, the Mastigocladopsis repens rhodopsin (MastR). Chloride-pumping MastR contains in its ion transport pathway a unique Thr-Ser-Asp (TSD) motif, which is involved in the binding of a chloride ion. The structure reveals that the chloride-binding mode is more similar to HRs than chloride-pumping rhodopsins, but the overall structure most closely resembles bacteriorhodopsin (BR), an archaeal proton pump. The MastR structure shows a trimer arrangement reminiscent of BR-like proton pumps and shows features at the extracellular side more similar to BR than the other chloride pumps. We further solved the structure of the MastR-T74D mutant, which contains a single amino acid replacement in the TSD motif. We provide insights into why this point mutation can convert the MastR chloride pump into a proton pump but cannot in HRs. Our study points at the importance of precise coordination and exact location of the water molecule in the active center of proton pumps, which serves as a bridge for the key proton transfer.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Juan D Sanchez Vasquez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica H Y Chu
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Harris
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - R J Dwayne Miller
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Vectorial Proton Transport Mechanism of RxR, a Phylogenetically Distinct and Thermally Stable Microbial Rhodopsin. Sci Rep 2020; 10:282. [PMID: 31937866 PMCID: PMC6959264 DOI: 10.1038/s41598-019-57122-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/30/2019] [Indexed: 11/08/2022] Open
Abstract
Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H+) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.
Collapse
|
20
|
Kojima K, Shibukawa A, Sudo Y. The Unlimited Potential of Microbial Rhodopsins as Optical Tools. Biochemistry 2019; 59:218-229. [PMID: 31815443 DOI: 10.1021/acs.biochem.9b00768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial rhodopsins, a photoactive membrane protein family, serve as fundamental tools for optogenetics, an innovative technology for controlling biological activities with light. Microbial rhodopsins are widely distributed in nature and have a wide variety of biological functions. Regardless of the many different known types of microbial rhodopsins, only a few of them have been used in optogenetics to control neural activity to understand neural networks. The efforts of our group have been aimed at identifying and characterizing novel rhodopsins from nature and also at engineering novel variant rhodopsins by rational design. On the basis of the molecular and functional characteristics of those novel rhodopsins, we have proposed new rhodopsin-based optogenetics tools to control not only neural activities but also "non-neural" activities. In this Perspective, we introduce the achievements and summarize future challenges in creating optogenetics tools using rhodopsins. The implementation of optogenetics deep inside an in vivo brain is the well-known challenge for existing rhodopsins. As a perspective to address this challenge, we introduce innovative optical illumination techniques using wavefront shaping that can reinforce the low light sensitivity of the rhodopsins and realize deep-brain optogenetics. The applications of our optogenetics tools could be extended to manipulate non-neural biological activities such as gene expression, apoptosis, energy production, and muscle contraction. We also discuss the potentially unlimited biotechnological applications of microbial rhodopsins in the future such as in photovoltaic devices and in drug delivery systems. We believe that advances in the field will greatly expand the potential uses of microbial rhodopsins as optical tools.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
21
|
Morizumi T, Ou WL, Van Eps N, Inoue K, Kandori H, Brown LS, Ernst OP. X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 2019; 9:11283. [PMID: 31375689 PMCID: PMC6677831 DOI: 10.1038/s41598-019-47445-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR’s hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR’s oligomerization state using double electron–electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.
Collapse
Affiliation(s)
- Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Keiichi Inoue
- The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan.,OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 464-8555, Japan
| | - Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
22
|
Yamanashi T, Maki M, Kojima K, Shibukawa A, Tsukamoto T, Chowdhury S, Yamanaka A, Takagi S, Sudo Y. Quantitation of the neural silencing activity of anion channelrhodopsins in Caenorhabditis elegans and their applicability for long-term illumination. Sci Rep 2019; 9:7863. [PMID: 31133660 PMCID: PMC6536681 DOI: 10.1038/s41598-019-44308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
Ion pumps and channels are responsible for a wide variety of biological functions. Ion pumps transport only one ion during each stimulus-dependent reaction cycle, whereas ion channels conduct a large number of ions during each cycle. Ion pumping rhodopsins such as archaerhodopsin-3 (Arch) are often utilized as light-dependent neural silencers in animals, but they require a high-density light illumination of around 1 mW/mm2. Recently, anion channelrhodopsins -1 and -2 (GtACR1 and GtACR2) were discovered as light-gated anion channels from the cryptophyte algae Guillardia theta. GtACRs are therefore expected to silence neural activity much more efficiently than Arch. In this study, we successfully expressed GtACRs in neurons of the nematode Caenorhabditis elegans (C. elegans) and quantitatively evaluated how potently GtACRs can silence neurons in freely moving C. elegans. The results showed that the light intensity required for GtACRs to cause locomotion paralysis was around 1 µW/mm2, which is three orders of magnitude smaller than the light intensity required for Arch. As attractive features, GtACRs are less harmfulness to worms and allow stable neural silencing effects under long-term illumination. Our findings thus demonstrate that GtACRs possess a hypersensitive neural silencing activity in C. elegans and are promising tools for long-term neural silencing.
Collapse
Affiliation(s)
- Taro Yamanashi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Misayo Maki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Shibukawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.,Faculty of Advanced Life Science and Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo, 060-0810, Japan
| | - Srikanta Chowdhury
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Shin Takagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
23
|
Han HW, Ko LN, Yang CS, Hsu SH. Potential of Engineered Bacteriorhodopsins as Photoactivated Biomaterials in Modulating Neural Stem Cell Behavior. ACS Biomater Sci Eng 2019; 5:3068-3078. [PMID: 33405539 DOI: 10.1021/acsbiomaterials.9b00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteriorhodopsin (BR), a light-sensitive bacterial proton pump, has been demonstrated the capacity for regulating the neural activity in mammalian cells. Because of the difficulty in production and purification in large quantities, the BR proteins have neither been directly employed to biomedical applications nor verified the functionality by protein administration. Previously, we have invented a highly expressible bacteriorhodopsin (HEBR) and established the massive production protocol. In the current study, we mass-produced the two types of HEBR proteins that have normal or abnormal activity on the proton pumping, and then we treated murine neural stem cells (NSCs) with these HEBR proteins. We discovered that the cell behaviors including growth, metabolism, mitochondrial inner membrane potential, and differentiation were obviously affected in NSCs after the treatment of HEBR proteins. Particularly, these effects induced by HEBR proteins were correlated to their proton pump activity and could be altered by cell culture substrate materials. Current findings suggest that the engineered light-sensitive HEBR protein can serve as a biological material to directly influence the multiple behaviors of mammalian cells, which is further modified by the cell culture substrate material, revealing the versatile potential of HEBR protein in biomaterial applications.
Collapse
Affiliation(s)
| | | | | | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan, Miaoli County, Taiwan 35053, R.O.C
| |
Collapse
|
24
|
Dong N, Berlinguer-Palmini R, Soltan A, Ponon N, O'Neil A, Travelyan A, Maaskant P, Degenaar P, Sun X. Opto-electro-thermal optimization of photonic probes for optogenetic neural stimulation. JOURNAL OF BIOPHOTONICS 2018; 11:e201700358. [PMID: 29603666 DOI: 10.1002/jbio.201700358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Implantable photonic probes are of increasing interest to the field of biophotonics and in particular, optogenetic neural stimulation. Active probes with onboard light emissive elements allow for electronic multiplexing and can be manufactured through existing microelectronics methods. However, as the optogenetics field moves towards clinical practice, an important question arises as to whether such probes will cause excessive thermal heating of the surrounding tissue. Light emitting diodes typically produce more heat than light. The resultant temperature rise of the probe surface therefore needs to be maintained under the regulatory limit of 2°C. This work combines optical and thermal modelling, which have been experimental verified. Analysis has been performed on the effect of probe/emitter geometries, emitter, and radiance requirements. Finally, the effective illumination volume has been calculated within thermal limits for different probe emitter types and required thresholds.
Collapse
Affiliation(s)
- Na Dong
- National Research Center for Optical Sensing/Communications Integrated Networking, Department of Electronics Engineering, Southeast University, Nanjing, China
| | | | - Ahmed Soltan
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Nikhil Ponon
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Anthony O'Neil
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Andrew Travelyan
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle, UK
| | - Pleun Maaskant
- Tyndall Institute, University College Cork, Cork, Ireland
| | - Patrick Degenaar
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Xiaohan Sun
- National Research Center for Optical Sensing/Communications Integrated Networking, Department of Electronics Engineering, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Kojima K, Watanabe HC, Doi S, Miyoshi N, Kato M, Ishikita H, Sudo Y. Mutational analysis of the conserved carboxylates of anion channelrhodopsin-2 (ACR2) expressed in Escherichia coli and their roles in anion transport. Biophys Physicobiol 2018; 15:179-188. [PMID: 30349802 PMCID: PMC6194965 DOI: 10.2142/biophysico.15.0_179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/18/2018] [Indexed: 12/01/2022] Open
Abstract
Anion channelrhodopsin-2 (ACR2), a light-gated channel recently identified from the cryptophyte alga Guillardia theta, exhibits anion channel activity with exclusive selectivity. In addition to its novel function, ACR2 has become a focus of interest as a powerful tool for optogenetics. Here we combined experimental and computational approaches to investigate the roles of conserved carboxylates on the anion transport activity of ACR2 in Escherichia coli membrane. First, we replaced six conserved carboxylates with a neutral residue (i.e. E9Q, E56Q, E64Q, E159Q, E219Q and D230N), and measured anion transport activity using E. coli expression system. E159Q and D230N exhibited significantly lower anion transport activity compared with wild-type ACR2 (1/12~1/3.4), which suggests that E159 and D230 play important roles in the anion transport. Second, to explain its molecular aspects, we constructed a homology model of ACR2 based on the crystal structure of a cation channelrhodopsin (ChR). The model structure showed a cavity formed by four transmembrane helices (TM1, TM2, TM3 and TM7) similar to ChRs, as a putative anion conducting pathway. Although E159 is not located in the putative pathway, the model structure showed hydrogen bonds between E159 and R129 with a water molecule. D230 is located in the pathway near the protonated Schiff base (PSB) of the chromophore retinal, which suggests that there is an interaction between D230 and the PSB. Thus, we demonstrated the functional importance and the hypothetical roles of two conserved carboxylates, E159 and D230, in the anion transport activity of ACR2 in E. coli membrane.
Collapse
Affiliation(s)
- Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi C Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Satoko Doi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Natsuki Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Misaki Kato
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
26
|
Zhao H, Soltan A, Maaskant P, Dong N, Sun X, Degenaar P. A Scalable Optoelectronic Neural Probe Architecture With Self-Diagnostic Capability. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS : A PUBLICATION OF THE IEEE CIRCUITS AND SYSTEMS SOCIETY 2018; 65:2431-2442. [PMID: 30450493 PMCID: PMC6054034 DOI: 10.1109/tcsi.2018.2792219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/11/2017] [Accepted: 12/22/2017] [Indexed: 05/22/2023]
Abstract
There is a growing demand for the development of new types of implantable optoelectronics to support both basic neuroscience and optogenetic treatments for neurological disorders. Target specification requirements include multi-site optical stimulation, programmable radiance profile, safe operation, and miniaturization. It is also preferable to have a simple serial interface rather than large numbers of control lines. This paper demonstrates an optrode structure comprising of a standard complementary metal-oxide-semiconductor process with 18 optical stimulation drivers. Furthermore, diagnostic sensing circuitry is incorporated to determine the long-term functionality of the photonic elements. A digital control system is incorporated to allow independent multisite control and serial communication with external control units.
Collapse
Affiliation(s)
- Hubin Zhao
- 1Newcastle UniversityNewcastle upon TyneNE1 7RUU.K
- 2University College LondonLondonWC1E 6BTU.K
| | - Ahmed Soltan
- 3School of Electrical and Electronic EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUU.K
| | - Pleun Maaskant
- 4Tyndall National InstituteUniversity College CorkT12 R5CPCorkIreland
| | - Na Dong
- 5South East UniversityNanjing210018China
| | | | - Patrick Degenaar
- 3School of Electrical and Electronic EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUU.K
| |
Collapse
|
27
|
Shionoya T, Mizuno M, Tsukamoto T, Ikeda K, Seki H, Kojima K, Shibata M, Kawamura I, Sudo Y, Mizutani Y. High Thermal Stability of Oligomeric Assemblies of Thermophilic Rhodopsin in a Lipid Environment. J Phys Chem B 2018; 122:6945-6953. [PMID: 29893559 DOI: 10.1021/acs.jpcb.8b04894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thermophilic rhodopsin (TR) is a light-driven proton pump from the extreme thermophile Thermus thermophilus JL-18. Previous studies on TR solubilized with detergent showed that the protein exhibits high thermal stability and forms a trimer at room temperature but irreversibly dissociates into monomers when incubated at physiological temperature (75 °C). In the present study, we used resonance Raman (RR) spectroscopy, solid-state NMR spectroscopy, and high-speed atomic force microscopy to analyze the oligomeric structure of TR in a lipid environment. The obtained spectra and microscopic images demonstrate that TR adopts a pentameric form in a lipid environment and that this assembly is stable at the physiological temperature, in contrast to the behavior of the protein in the solubilized state. These results indicate that the thermal stability of the oligomeric assembly of TR is higher in a lipid environment than in detergent micelles. The observed RR spectra also showed that the retinal chromophore is strongly hydrogen bonded to an internal water molecule via a protonated Schiff base, which is characteristic of proton-pumping rhodopsins. The obtained data strongly suggest that TR functions in the pentameric form at physiological temperature in the extreme thermophile T. thermophilus JL-18. We utilized the high thermal stability of the monomeric form of solubilized TR and here report the first RR spectra of the monomeric form of a microbial rhodopsin. The observed RR spectra revealed that the monomerization of TR alters the chromophore structure: there are changes in the bond alternation of the polyene chain and in the hydrogen-bond strength of the protonated Schiff base. The present study revealed the high thermal stability of oligomeric assemblies of TR in the lipid environment and suggested the importance of using TR embedded in lipid membrane for elucidation of its functional mechanism.
Collapse
Affiliation(s)
- Tomomi Shionoya
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , 1-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | | | - Hayato Seki
- Graduate School of Engineering , Yokohama National University , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , 1-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | | | - Izuru Kawamura
- Graduate School of Engineering , Yokohama National University , Hodogaya-ku, Yokohama 240-8501 , Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , 1-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
28
|
Engelhard C, Chizhov I, Siebert F, Engelhard M. Microbial Halorhodopsins: Light-Driven Chloride Pumps. Chem Rev 2018; 118:10629-10645. [DOI: 10.1021/acs.chemrev.7b00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, OE8830 Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 9, 79104 Freiburg, Germany
| | - Martin Engelhard
- Max Planck Institute for Molecular Physiology, Otto Hahn Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Takayama R, Kaneko A, Okitsu T, Tsunoda SP, Shimono K, Mizuno M, Kojima K, Tsukamoto T, Kandori H, Mizutani Y, Wada A, Sudo Y. Production of a Light-Gated Proton Channel by Replacing the Retinal Chromophore with Its Synthetic Vinylene Derivative. J Phys Chem Lett 2018; 9:2857-2862. [PMID: 29750864 DOI: 10.1021/acs.jpclett.8b00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rhodopsin is widely distributed in organisms as a membrane-embedded photoreceptor protein, consisting of the apoprotein opsin and vitamin-A aldehyde retinal, A1-retinal and A2-retinal being the natural chromophores. Modifications of opsin (e.g., by mutations) have provided insight into the molecular mechanism of the light-induced functions of rhodopsins as well as providing tools in chemical biology to control cellular activity by light. Instead of the apoprotein opsin, in this study, we focused on the retinal chromophore and synthesized three vinylene derivatives of A2-retinal. One of them, C(14)-vinylene A2-retinal (14V-A2), was successfully incorporated into the opsin of a light-driven proton pump archaerhodopsin-3 (AR3). Electrophysiological experiments revealed that the opsin of AR3 (archaeopsin3, AO3) with 14V-A2 functions as a light-gated proton channel. The engineered proton channel showed characteristic photochemical properties, which are significantly different from those of AR3. Thus, we successfully produced a proton channel by replacing the chromophore of AR3.
Collapse
Affiliation(s)
- Riho Takayama
- Faculty of Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Akimasa Kaneko
- Faculty of Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science , Kobe Pharmaceutical University , Kobe 658-8558 , Japan
| | - Satoshi P Tsunoda
- Department of Frontier Materials , Nagoya Institute of Technology , Nagoya 466-8555 , Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences , Toho University , Funabashi 274-8510 , Japan
| | - Misao Mizuno
- Department of Chemistry , Graduate School of Science, Osaka University , Toyonaka 560-0043 , Japan
| | - Keiichi Kojima
- Faculty of Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Takashi Tsukamoto
- Faculty of Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| | - Hideki Kandori
- Department of Frontier Materials , Nagoya Institute of Technology , Nagoya 466-8555 , Japan
| | - Yasuhisa Mizutani
- Department of Chemistry , Graduate School of Science, Osaka University , Toyonaka 560-0043 , Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science , Kobe Pharmaceutical University , Kobe 658-8558 , Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University , Okayama 700-8530 , Japan
| |
Collapse
|
30
|
Inoue S, Yoshizawa S, Nakajima Y, Kojima K, Tsukamoto T, Kikukawa T, Sudo Y. Spectroscopic characteristics ofRubricoccus marinusxenorhodopsin (RmXeR) and a putative model for its inward H+transport mechanism. Phys Chem Chem Phys 2018; 20:3172-3183. [DOI: 10.1039/c7cp05033j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On the basis of functional and spectroscopic characterization, we propose a model for the inward proton transport inRmXeR, a newly discovered microbial rhodopsin.
Collapse
Affiliation(s)
- Saki Inoue
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute
- The University of Tokyo
- Chiba 277-8564
- Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute
- The University of Tokyo
- Chiba 277-8564
- Japan
| | - Keiichi Kojima
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Takashi Tsukamoto
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science
- Hokkaido University
- Sapporo 060-0810
- Japan
- Global Station for Soft Matter
| | - Yuki Sudo
- Graduate School of Medicine
- Dentistry and Pharmaceutical Sciences
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
31
|
Kaneko A, Inoue K, Kojima K, Kandori H, Sudo Y. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 2017; 9:861-876. [PMID: 29178082 DOI: 10.1007/s12551-017-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023] Open
Abstract
Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.
Collapse
Affiliation(s)
- Akimasa Kaneko
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Yuki Sudo
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan.
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
32
|
Honda N, Tsukamoto T, Sudo Y. Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Kanehara K, Yoshizawa S, Tsukamoto T, Sudo Y. A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941 T. Sci Rep 2017; 7:44427. [PMID: 28290523 PMCID: PMC5349596 DOI: 10.1038/srep44427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
Rhodopsins are proteins that contain seven transmembrane domains with a chromophore retinal and that function as photoreceptors for light-energy conversion and light-signal transduction in a wide variety of organisms. Here we characterized a phylogenetically distinctive new rhodopsin from the thermophilic eubacterium Rubrobacter xylanophilus DSM 9941T that was isolated from thermally polluted water. Although R. xylanophilus rhodopsin (RxR) is from Actinobacteria, it is located between eukaryotic and archaeal rhodopsins in the phylogenetic tree. Escherichia coli cells expressing RxR showed a light-induced decrease in environmental pH and inhibition by a protonophore, indicating that it works as a light-driven outward proton pump. We characterized purified RxR spectroscopically, and showed that it has an absorption maximum at 541 nm and binds nearly 100% all-trans retinal. The pKa values for the protonated retinal Schiff base and its counterion were estimated to be 10.7 and 1.3, respectively. Time-resolved flash-photolysis experiments revealed the formation of a red-shifted intermediate. Of note, RxR showed an extremely high thermal stability in comparison with other proton pumping rhodopsins such as thermophilic rhodopsin TR (by 16-times) and bacteriorhodopsin from Halobacterium salinarum (HsBR, by 4-times).
Collapse
Affiliation(s)
- Kanae Kanehara
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Takashi Tsukamoto
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
34
|
An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci Rep 2017; 7:41879. [PMID: 28150799 PMCID: PMC5288786 DOI: 10.1038/srep41879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Anion channelrhodopsin-2 (ACR2) was recently identified from the cryptophyte algae Guillardia theta and has become a focus of interest in part because of its novel light-gated anion channel activity and its extremely high neural silencing activity. In this study, we tried to express ACR2 in Escherichia coli cells as a recombinant protein. The E. coli cells expressing ACR2 showed an increase in pH upon blue-light illumination in the presence of monovalent anions and the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating an inward anion channel activity. Then, taking advantage of the E. coli expression system, we performed alanine-scanning mutagenesis on conserved basic amino acid residues. One of them, R84A, showed strong signals compared with the wild-type, indicating an inhibitory role of R84 on Cl− transportation. The signal was strongly enhanced in R84E, whereas R84K was less effective than the wild-type (i.e., R84). These results suggest that the positive charge at position 84 is critical for the inhibition. Thus we succeeded in functional expression of ACR2 in E. coli and found the inhibitory role of R84 during the anion transportation.
Collapse
|