1
|
Boyd RJ, Olson TL, Zook JD, Stein D, Aceves M, Lin WH, Craciunescu FM, Hansen DT, Anastasiadis PZ, Singharoy A, Fromme P. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma. FASEB J 2022; 36:e22378. [PMID: 35639414 PMCID: PMC9262375 DOI: 10.1096/fj.202101808rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein‐protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co‐elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic—Diffuse B‐cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Collapse
Affiliation(s)
- Ryan J Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Tien L Olson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Derek Stein
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Manuel Aceves
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA.,Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, USA
| | | | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Konshina AG, Dubovskii PV, Efremov RG. Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane "Dynamic Molecular Portraits". J Chem Inf Model 2020; 61:385-399. [PMID: 33382618 DOI: 10.1021/acs.jcim.0c01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many peripheral membrane-binding polypeptides(MBPs), especially β-structural ones, the precise molecular mechanisms of membrane insertion remain unclear. In most cases, only the terminal water-soluble and membrane-bound states have been elucidated, whereas potential functionally important intermediate stages are still not understood in sufficient detail. In this study, we present one of the first successful attempts to describe step-by-step embedding of the MBP cardiotoxin 2 (CT2) from cobra Naja oxiana venom into a lipid bilayer at the atomistic level. CT2 possesses a highly conservative and rigid β-structured three-finger fold shared by many other exogenous and endogenous proteins performing a wide variety of functions. The incorporation of CT2 into the lipid bilayer was analyzed via a 2 μs all-atom molecular dynamics (MD) simulation without restraints. This process was shown to occur over a number of distinct steps, while the geometry of initial membrane attachment drastically differs from that of the final equilibrated state. In the latter one, the hydrophobic platform ("bottom") formed by the tips of the three loops is deeply buried into the lipid bilayer. This agrees well with the NMR data obtained earlier for CT2 in detergent micelles. However, the bottom is too bulky to insert itself into the membrane at once. Instead, the gradual immersion of CT2 initiated by the loop-1 was observed. This initial binding stage was also demonstrated in a series of MD runs with varying starting orientations of the toxin with respect to the bilayer surface. Apart from the nonspecific long-range electrostatic attraction and hydrophobic match/mismatch factor, several specific lipid-binding sites were identified in CT2. They were shown to promote membrane insertion by engaging in strong interactions with lipid head groups, fine-tuning the toxin-membrane accommodation. We therefore propose that the toxin insertion relies on the interplay of nonspecific and specific interactions, which are determined by the "dynamic molecular portraits" of the two players, the protein and the membrane. The proposed model does not require protein oligomerization for membrane insertion and can be further employed to design MBPs with predetermined properties with regard to particular membrane targets.
Collapse
Affiliation(s)
- Anastasia G Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.,National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow 101000, Russia.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
3
|
Janmey PA, Bucki R, Radhakrishnan R. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochem Biophys Res Commun 2018; 506:307-314. [PMID: 30139519 DOI: 10.1016/j.bbrc.2018.07.155] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/21/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
Abstract
Actin cytoskeleton dynamics depend on a tight regulation of actin filament formation from an intracellular pool of monomers, followed by their linkage to each other or to cell membranes, followed by their depolymerization into a fresh pool of actin monomers. The ubiquitous requirement for continuous actin remodeling that is necessary for many cellular functions is orchestrated in large part by actin binding proteins whose affinity for actin is altered by inositol phospholipids, most prominently PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate). The kinetics of PI(4,5)P2 synthesis and hydrolysis, its lateral distribution within the lipid bilayer, and coincident detection of PI(4,5)P2 and another signal, all play a role in determining when and where a particular PI(4,5)P2-regulated protein is inactivated or activated to exert its effect on the actin cytoskeleton. This review summarizes a range of models that have been developed to explain how PI(4,5)P2 might function in the complex chemical and structural environment of the cell based on a combination of experiment and computational studies.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|