1
|
Ng ET, Kinjo AR. Plasticity-led and mutation-led evolutions are different modes of the same developmental gene regulatory network. PeerJ 2024; 12:e17102. [PMID: 38560475 PMCID: PMC10979742 DOI: 10.7717/peerj.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
The standard theory of evolution proposes that mutations cause heritable variations, which are naturally selected, leading to evolution. However, this mutation-led evolution (MLE) is being questioned by an alternative theory called plasticity-led evolution (PLE). PLE suggests that an environmental change induces adaptive phenotypes, which are later genetically accommodated. According to PLE, developmental systems should be able to respond to environmental changes adaptively. However, developmental systems are known to be robust against environmental and mutational perturbations. Thus, we expect a transition from a robust state to a plastic one. To test this hypothesis, we constructed a gene regulatory network (GRN) model that integrates developmental processes, hierarchical regulation, and environmental cues. We then simulated its evolution over different magnitudes of environmental changes. Our findings indicate that this GRN model exhibits PLE under large environmental changes and MLE under small environmental changes. Furthermore, we observed that the GRN model is susceptible to environmental or genetic fluctuations under large environmental changes but is robust under small environmental changes. This indicates a breakdown of robustness due to large environmental changes. Before the breakdown of robustness, the distribution of phenotypes is biased and aligned to the environmental changes, which would facilitate rapid adaptation should a large environmental change occur. These observations suggest that the evolutionary transition from mutation-led to plasticity-led evolution is due to a developmental transition from robust to susceptible regimes over increasing magnitudes of environmental change. Thus, the GRN model can reconcile these conflicting theories of evolution.
Collapse
Affiliation(s)
- Eden T.H. Ng
- Department of Mathematics, Universiti Brunei Darussalam, Gadong, Brunei
| | - Akira R. Kinjo
- Department of Mathematics, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
2
|
Ng ETH, Kinjo AR. Plasticity-led evolution as an intrinsic property of developmental gene regulatory networks. Sci Rep 2023; 13:19830. [PMID: 37963964 PMCID: PMC10645858 DOI: 10.1038/s41598-023-47165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
The modern evolutionary synthesis seemingly fails to explain how a population can survive a large environmental change: the pre-existence of heritable variants adapted to the novel environment is too opportunistic, whereas the search for new adaptive mutations after the environmental change is so slow that the population may go extinct. Plasticity-led evolution, the initial environmental induction of a novel adaptive phenotype followed by genetic accommodation, has been proposed to solve this problem. However, the mechanism enabling plasticity-led evolution remains unclear. Here, we present computational models that exhibit behaviors compatible with plasticity-led evolution by extending the Wagner model of gene regulatory networks. The models show adaptive plastic response and the uncovering of cryptic mutations under large environmental changes, followed by genetic accommodation. Moreover, these behaviors are consistently observed over distinct novel environments. We further show that environmental cues, developmental processes, and hierarchical regulation cooperatively amplify the above behaviors and accelerate evolution. These observations suggest plasticity-led evolution is a universal property of complex developmental systems independent of particular mutations.
Collapse
Affiliation(s)
- Eden Tian Hwa Ng
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Akira R Kinjo
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam.
| |
Collapse
|
3
|
Ng ETH, Kinjo AR. Computational modelling of plasticity-led evolution. Biophys Rev 2022; 14:1359-1367. [PMID: 36659990 PMCID: PMC9842839 DOI: 10.1007/s12551-022-01018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Plasticity-led evolution is a form of evolution where a change in the environment induces novel traits via phenotypic plasticity, after which the novel traits are genetically accommodated over generations under the novel environment. This mode of evolution is expected to resolve the problem of gradualism (i.e., evolution by the slow accumulation of mutations that induce phenotypic variation) implied by the Modern Evolutionary Synthesis, in the face of a large environmental change. While experimental works are essential for validating that plasticity-led evolution indeed happened, we need computational models to gain insight into its underlying mechanisms and make qualitative predictions. Such computational models should include the developmental process and gene-environment interactions in addition to genetics and natural selection. We point out that gene regulatory network models can incorporate all the above notions. In this review, we highlight results from computational modelling of gene regulatory networks that consolidate the criteria of plasticity-led evolution. Since gene regulatory networks are mathematically equivalent to artificial recurrent neural networks, we also discuss their analogies and discrepancies, which may help further understand the mechanisms underlying plasticity-led evolution.
Collapse
Affiliation(s)
- Eden Tian Hwa Ng
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Akira R. Kinjo
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| |
Collapse
|
4
|
Mothersill C, Abend M, Bréchignac F, Copplestone D, Geras'kin S, Goodman J, Horemans N, Jeggo P, McBride W, Mousseau TA, O'Hare A, Papineni RVL, Powathil G, Schofield PN, Seymour C, Sutcliffe J, Austin B. The tubercular badger and the uncertain curve:- The need for a multiple stressor approach in environmental radiation protection. ENVIRONMENTAL RESEARCH 2019; 168:130-140. [PMID: 30296640 DOI: 10.1016/j.envres.2018.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
This article presents the results of a workshop held in Stirling, Scotland in June 2018, called to examine critically the effects of low-dose ionising radiation on the ecosphere. The meeting brought together participants from the fields of low- and high-dose radiobiology and those working in radioecology to discuss the effects that low doses of radiation have on non-human biota. In particular, the shape of the low-dose response relationship and the extent to which the effects of low-dose and chronic exposure may be predicted from high dose rate exposures were discussed. It was concluded that high dose effects were not predictive of low dose effects. It followed that the tools presently available were deemed insufficient to reliably predict risk of low dose exposures in ecosystems. The workshop participants agreed on three major recommendations for a path forward. First, as treating radiation as a single or unique stressor was considered insufficient, the development of a multidisciplinary approach is suggested to address key concerns about multiple stressors in the ecosphere. Second, agreed definitions are needed to deal with the multiplicity of factors determining outcome to low dose exposures as a term can have different meanings in different disciplines. Third, appropriate tools need to be developed to deal with the different time, space and organisation level scales. These recommendations permit a more accurate picture of prospective risks.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Francois Bréchignac
- Institute for Radioprotection and Nuclear Safety (IRSN) & International Union of Radioecology, Centre du Cadarache, Bldg 229, St Paul-lez-Durance, France.
| | - David Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Stanislav Geras'kin
- Russian Institute of Radiology & Agroecology, Kievskoe shosse, 109km, Obninsk 249020, Russia.
| | - Jessica Goodman
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Nele Horemans
- Belgian Nuclear Research Centre SCK CEN, Biosphere Impact Studies, Boeretang 200, B-2400 Mol, Belgium.
| | - Penny Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| | - William McBride
- University of California Los Angeles, David Geffen School of Medicine, Department of Radiation Oncology, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | - Anthony O'Hare
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Rao V L Papineni
- Department of Surgery, University of Kansas Medical Center - KUMC (Adjunct), and PACT & Health, Branford, CT, USA.
| | - Gibin Powathil
- Department of Mathematics, College of Science, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK.
| | - Paul N Schofield
- Dept of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Jill Sutcliffe
- Low Level Radiation and Health Conference, Ingrams Farm Fittleworth Road, Wisborough Green RH14 0JA, West Sussex, UK.
| | - Brian Austin
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
5
|
Mothersill C, Abend M, Bréchignac F, Iliakis G, Impens N, Kadhim M, Møller AP, Oughton D, Powathil G, Saenen E, Seymour C, Sutcliffe J, Tang FR, Schofield PN. When a duck is not a duck; a new interdisciplinary synthesis for environmental radiation protection. ENVIRONMENTAL RESEARCH 2018; 162:318-324. [PMID: 29407763 DOI: 10.1016/j.envres.2018.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
This consensus paper presents the results of a workshop held in Essen, Germany in September 2017, called to examine critically the current approach to radiological environmental protection. The meeting brought together participants from the field of low dose radiobiology and those working in radioecology. Both groups have a common aim of identifying radiation exposures and protecting populations and individuals from harmful effects of ionising radiation exposure, but rarely work closely together. A key question in radiobiology is to understand mechanisms triggered by low doses or dose rates, leading to adverse outcomes of individuals while in radioecology a key objective is to recognise when harm is occurring at the level of the ecosystem. The discussion provided a total of six strategic recommendations which would help to address these questions.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - François Bréchignac
- Institute for Radioprotection and Nuclear Safety (IRSN) & International Union of Radioecology (IUR), Centre du Cadarache, Bldg 229, St Paul-lez-Durance, France.
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen, Medical School, Hufeland Str. 55, 45122 Essen, Germany.
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Equipe Diversité, Ecologie et Evolution Microbiennes Université Paris-Sud, CNRS, and AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France.
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1432 Ås, Norway.
| | - Gibin Powathil
- Department of Mathematics, College of Science, Swansea University, Singleton Park, Swansea Wales SA2 8PP, UK.
| | - Eline Saenen
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Boeretang 200, 2400 Mol, Belgium.
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | - Jill Sutcliffe
- Low Level Radiation and Health Group, Ingrams Farm Fittleworth Road, Wisborough Green RH14 0JA, West Sussex, UK.
| | - Fen-Ru Tang
- National University of Singapore, Radiobiology Research Laboratory, Singapore Nuclear, Research and Safety Initiative, Singapore.
| | - Paul N Schofield
- Dept of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
6
|
Nishikawa K, Kinjo AR. Mechanism of evolution by genetic assimilation : Equivalence and independence of genetic mutation and epigenetic modulation in phenotypic expression. Biophys Rev 2018; 10:667-676. [PMID: 29468522 DOI: 10.1007/s12551-018-0403-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Conrad H. Waddington discovered the phenomenon of genetic assimilation through a series of experiments on fruit flies. In those experiments, artificially exerted environmental stress induced plastic phenotypic changes in the fruit flies, but after some generations, the same phenotypic variant started to appear without the environmental stress. Both the initial state (where the phenotypic changes were environmentally induced and plastic) and the final state (where the phenotypic changes were genetically fixed and constitutive) are experimental facts. However, it remains unclear how the environmentally induced phenotypic change in the first generation becomes genetically fixed in the central process of genetic assimilation itself. We have argued that the key to understanding the mechanism of genetic assimilation lies in epigenetics, and proposed the "cooperative model" in which the evolutionary process depends on both genetic and epigenetic factors. Evolutionary simulations based on the cooperative model reproduced the process of genetic assimilation. Detailed analysis of the trajectories has revealed genetic assimilation is a process in which epigenetically induced phenotypic changes are incrementally and statistically replaced with multiple minor genetic mutations through natural selection. In this scenario, epigenetic and genetic changes may be considered as mutually independent but equivalent in terms of their effects on phenotypic changes. This finding rejects the common (and confused) hypothesis that epigenetically induced phenotypic changes depend on genetic mutations. Furthermore, we argue that transgenerational epigenetic inheritance is not required for evolution by genetic assimilation.
Collapse
Affiliation(s)
- Ken Nishikawa
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Kinjo AR. Cooperative "folding transition" in the sequence space facilitates function-driven evolution of protein families. J Theor Biol 2018; 443:18-27. [PMID: 29355538 DOI: 10.1016/j.jtbi.2018.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/23/2022]
Abstract
In the protein sequence space, natural proteins form clusters of families which are characterized by their unique native folds whereas the great majority of random polypeptides are neither clustered nor foldable to unique structures. Since a given polypeptide can be either foldable or unfoldable, a kind of "folding transition" is expected at the boundary of a protein family in the sequence space. By Monte Carlo simulations of a statistical mechanical model of protein sequence alignment that coherently incorporates both short-range and long-range interactions as well as variable-length insertions to reproduce the statistics of the multiple sequence alignment of a given protein family, we demonstrate the existence of such transition between natural-like sequences and random sequences in the sequence subspaces for 15 domain families of various folds. The transition was found to be highly cooperative and two-state-like. Furthermore, enforcing or suppressing consensus residues on a few of the well-conserved sites enhanced or diminished, respectively, the natural-like pattern formation over the entire sequence. In most families, the key sites included ligand binding sites. These results suggest some selective pressure on the key residues, such as ligand binding activity, may cooperatively facilitate the emergence of a protein family during evolution. From a more practical aspect, the present results highlight an essential role of long-range effects in precisely defining protein families, which are absent in conventional sequence models.
Collapse
Affiliation(s)
- Akira R Kinjo
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Cortez MJV, Rabajante JF, Tubay JM, Babierra AL. From epigenetic landscape to phenotypic fitness landscape: Evolutionary effect of pathogens on host traits. INFECTION GENETICS AND EVOLUTION 2017; 51:245-254. [PMID: 28408285 DOI: 10.1016/j.meegid.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.
Collapse
Affiliation(s)
- Mark Jayson V Cortez
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines.
| | - Jerrold M Tubay
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Ariel L Babierra
- Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| |
Collapse
|