1
|
Wang C, Zhang K, Cai B, Haller JE, Carnazza KE, Hu J, Zhao C, Tian Z, Hu X, Hall D, Qiang J, Hou S, Liu Z, Gu J, Zhang Y, Seroogy KB, Burré J, Fang Y, Liu C, Brunger AT, Li D, Diao J. VAMP2 chaperones α-synuclein in synaptic vesicle co-condensates. Nat Cell Biol 2024; 26:1287-1295. [PMID: 38951706 DOI: 10.1038/s41556-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (α-Syn) aggregation is closely associated with Parkinson's disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)-a component of the SNARE complex that resides on SVs-directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn's function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn's function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson's disease.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel Hall
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Haugerud IS, Jaiswal P, Weber CA. Nonequilibrium Wet-Dry Cycling Acts as a Catalyst for Chemical Reactions. J Phys Chem B 2024; 128:1724-1736. [PMID: 38335971 PMCID: PMC10895654 DOI: 10.1021/acs.jpcb.3c05824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Recent experimental studies suggest that wet-dry cycles and coexisting phases can each strongly alter chemical processes. The mechanisms of why and to what degree chemical processes are altered when subjected to evaporation and condensation are unclear. To close this gap, we developed a theoretical framework for nondilute chemical reactions subject to nonequilibrium conditions of evaporation and condensation. We find that such conditions can change the half-time of the product's yield by more than an order of magnitude, depending on the substrate-solvent interaction. We show that the cycle frequency strongly affects the chemical turnover when the system is maintained out of equilibrium by wet-dry cycles. There exists a resonance behavior in the cycle frequency where the turnover is maximal. This resonance behavior enables wet-dry cycles to select specific chemical reactions, suggesting a potential mechanism for chemical evolution in prebiotic soups at early Earth.
Collapse
Affiliation(s)
- Ivar Svalheim Haugerud
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Pranay Jaiswal
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Christoph A Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| |
Collapse
|
3
|
Noone J, Wallace RG, Rochfort KD. Immunoprecipitation: Variations, Considerations, and Applications. Methods Mol Biol 2023; 2699:271-303. [PMID: 37647004 DOI: 10.1007/978-1-0716-3362-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Immunoprecipitation (IP) refers to methods of affinity chromatography that enrich and/or purify a specific protein from a complex mixture using a specific antibody immobilized on a solid support. Several operations and processes that are dependent on the isolation, concentration, and modification of proteins have seen improvement in their selectivity and separation based on the integration of IP-specific reactions into their workflows. This relatively simple principle has contributed significantly to our understanding of proteins and their behaviors and has become increasingly fundamental to most protein characterization studies today. In this chapter, we review the basic principles of IP and the several factors that influence each stage, and subsequently the success, of an IP experiment. Moreover, variations in application of the IP principle are discussed, and the adaptability of the techniques based on such is highlighted in the provision of two IP workflows to purify a particular protein from an entire cellular proteosome. These workflows cover the preparation and fractionation of crude cellular lysate into individual subcellular fractions, through to both "batch" and "column"-based extractions of the target protein of interest. Protocols for determining the validity of the workflows, and the presence/abundance of the protein of interest, are also briefly described.
Collapse
Affiliation(s)
- John Noone
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- AdventHealth, Translational Research Institute, Orlando, Florida, United States of America
| | - Robert G Wallace
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
4
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Hossain MS, Zhang Z, Ashok S, Jenks AR, Lynch CJ, Hougland JL, Mozhdehi D. Temperature-Responsive Nano-Biomaterials from Genetically Encoded Farnesylated Disordered Proteins. ACS APPLIED BIO MATERIALS 2022; 5:1846-1856. [PMID: 35044146 PMCID: PMC9115796 DOI: 10.1021/acsabm.1c01162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Despite broad interest in understanding the biological implications of protein farnesylation in regulating different facets of cell biology, the use of this post-translational modification to develop protein-based materials and therapies remains underexplored. The progress has been slow due to the lack of accessible methodologies to generate farnesylated proteins with broad physicochemical diversities rapidly. This limitation, in turn, has hindered the empirical elucidation of farnesylated proteins' sequence-structure-function rules. To address this gap, we genetically engineered prokaryotes to develop operationally simple, high-yield biosynthetic routes to produce farnesylated proteins and revealed determinants of their emergent material properties (nano-aggregation and phase-behavior) using scattering, calorimetry, and microscopy. These outcomes foster the development of farnesylated proteins as recombinant therapeutics or biomaterials with molecularly programmable assembly.
Collapse
Affiliation(s)
- Md. Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Sudhat Ashok
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ashley R. Jenks
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - James L. Hougland
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
7
|
Ryzhykau YL, Vlasov AV, Orekhov PS, Rulev MI, Rogachev AV, Vlasova AD, Kazantsev AS, Verteletskiy DP, Skoi VV, Brennich ME, Pernot P, Murugova TN, Gordeliy VI, Kuklin AI. Ambiguities in and completeness of SAS data analysis of membrane proteins: the case of the sensory rhodopsin II-transducer complex. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1386-1400. [PMID: 34726167 DOI: 10.1107/s2059798321009542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023]
Abstract
Membrane proteins (MPs) play vital roles in the function of cells and are also major drug targets. Structural information on proteins is vital for understanding their mechanism of function and is critical for the development of drugs. However, obtaining high-resolution structures of membrane proteins, in particular, under native conditions is still a great challenge. In such cases, the low-resolution methods small-angle X-ray and neutron scattering (SAXS and SANS) might provide valuable structural information. However, in some cases small-angle scattering (SAS) provides ambiguous ab initio structural information if complementary measurements are not performed and/or a priori information on the protein is not taken into account. Understanding the nature of the limitations may help to overcome these problems. One of the main problems of SAS data analysis of solubilized membrane proteins is the contribution of the detergent belt surrounding the MP. Here, a comprehensive analysis of how the detergent belt contributes to the SAS data of a membrane-protein complex of sensory rhodopsin II with its cognate transducer from Natronomonas pharaonis (NpSRII-NpHtrII) was performed. The influence of the polydispersity of NpSRII-NpHtrII oligomerization is the second problem that is addressed here. It is shown that inhomogeneity in the scattering length density of the detergent belt surrounding a membrane part of the complex and oligomerization polydispersity significantly impacts on SAXS and SANS profiles, and therefore on 3D ab initio structures. It is described how both problems can be taken into account to improve the quality of SAS data treatment. Since SAS data for MPs are usually obtained from solubilized proteins, and their detergent belt and, to a certain extent, oligomerization polydispersity are sufficiently common phenomena, the approaches proposed in this work might be used in SAS studies of different MPs.
Collapse
Affiliation(s)
- Yury L Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Philipp S Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Maksim I Rulev
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Andrey V Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Anastasia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander S Kazantsev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Dmitry P Verteletskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Vadim V Skoi
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Martha E Brennich
- Synchrotron Crystallography Team, EMBL Grenoble Outstation, 38042 Grenoble, France
| | - Petra Pernot
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Tatiana N Murugova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
8
|
The rapid "teabag" method for high-end purification of membrane proteins. Sci Rep 2020; 10:16167. [PMID: 32999380 PMCID: PMC7528119 DOI: 10.1038/s41598-020-73285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Overproduction and purification of membrane proteins are generally challenging and time-consuming procedures due to low expression levels, misfolding, and low stability once extracted from the membrane. Reducing processing steps and shortening the timespan for purification represent attractive approaches to overcome some of these challenges. We have therefore compared a fast “teabag” purification method with conventional purification for five different membrane proteins (MraY, AQP10, ClC-1, PAR2 and KCC2). Notably, this new approach reduces the purification time significantly, and the quality of the purified membrane proteins is equal to or exceeds conventional methods as assessed by size exclusion chromatography, SDS-PAGE and downstream applications such as ITC, crystallization and cryo-EM. Furthermore, the method is scalable, applicable to a range of affinity resins and allows for parallelization. Consequently, the technique has the potential to substantially simplify purification efforts of membrane proteins in basic and applied sciences.
Collapse
|
9
|
Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model. SUSTAINABILITY 2020. [DOI: 10.3390/su12187284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aims to re-investigate different aspects of a variety of filters and filtration processes within diverse realms of knowledge from an interdisciplinary point of view, and develops a comprehensive Active Model of Filter that accommodates the phenomena in its entire diversity and complexity. The Active Filter Model proposes to take Filter—from various fields and scales operating at material and symbolic level—not as mere objects, but as difference-producing phenomena that need to be addressed as complex active systems within event-based boundaries. The model underlines a systemic, operative, performative, and negentropic nature to the phenomena that invites one to; recognize various elements and intra-actions within a filter system; follow chains of operations and processes that render the activity; take the performative and ecology building aspect of the filter activity into consideration; and acknowledge the negentropic, order-producing nature of filtering phenomena. The Active Filter Model is meant to serve as a foundation for further analysis and synthesis in various fields dealing with Filter, and the research approach is put forward as a paradigm for how seemingly disciplinary concepts such as Filter can be rethought through interdisciplinary methods, and mutually complement research questions within active matter, biology, information philosophy, data science and sustainability discourses.
Collapse
|
10
|
Zhou G, Chu S, Kohli A, Szoka FC, Gochin M. Biophysical studies of HIV-1 glycoprotein-41 interactions with peptides and small molecules - Effect of lipids and detergents. Biochim Biophys Acta Gen Subj 2020; 1864:129724. [PMID: 32889078 DOI: 10.1016/j.bbagen.2020.129724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The hydrophobic pocket (HP) of HIV-1 glycoprotein-41 ectodomain is defined by two chains of the N-heptad repeat trimer, within the protein-protein interface that mediates 6HB formation. It is a potential target for inhibitors of viral fusion, but its hydrophobic nature and proximity to membrane in situ has precluded ready analysis of inhibitor interactions. METHODS We evaluated the sensitivity of 19F NMR and fluorescence for detecting peptide and small molecule binding to the HP and explored the effect of non-denaturing detergent or phospholipid as cosolvents and potential mimics of the membrane environment surrounding gp41. RESULTS Chemical shifts of aromatic fluorines were found to be sensitive to changes in the hydrogen bonding network that occurred when inhibitors transitioned from solvent into the HP or into ordered detergent micelles. Fluorescence intensities and emission maxima of autofluorescent compounds responded to changes in the local environment. CONCLUSIONS Gp41 - ligand binding occurred under all conditions, but was diminished in the presence of detergents. NMR and fluorescence studies revealed that dodecylphosphocholine (DPC) was a poor substitute for membrane in this system, while liposomes could mimic the membrane surroundings. GENERAL SIGNIFICANCE Our findings suggest that development of high potency small molecule binders to the HP may be frustrated by competition between binding to the HP and binding to the bilayer membrane.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America
| | - Aditya Kohli
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America
| | - Miriam Gochin
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, United States of America; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, United States of America.
| |
Collapse
|
11
|
Fan X, Zhao X, Su W, Tang X. Triton X-100-Modified Adenosine Triphosphate-Responsive siRNA Delivery Agent for Antitumor Therapy. Mol Pharm 2020; 17:3696-3708. [PMID: 32803981 DOI: 10.1021/acs.molpharmaceut.0c00291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modified polyethyleneimine (PEI) has been widely used as siRNA delivery agents. Here, a new Triton X-100-modified low-molecular-weight PEI siRNA delivery agent is developed together with the coupling of 4-carboxyphenylboronic acid (PBA) and dopamine grafted vitamin E (VEDA). Triton X-100, a nonionic detergent, greatly improves the cellular uptake of siRNA as well as the siRNA escape from endosome/lysosome because of its high transmembrane ability. In addition, the boronate bond between PBA and VEDA of the transfection agent can be triggered to release its entrapped siRNA because of the high level of adenosine triphosphate (ATP) in cancer cells. The transfection agent is successfully applied to deliver siRNAs targeting endogenous genes of epidermal growth factor receptor (EGFR) and kinesin-5 (Eg5) to cancer cells, showing good results on Eg5 and EGFR silencing ability and inhibition of cancer cell migration. Further in vivo study indicates that the Triton X-100-modified transfection agent is also efficient to deliver siRNA to cancer cells and shows significant tumor growth inhibition on mice tumor models. These results indicate that the Triton X-100-modified ATP-responsive transfection agent is a promising gene delivery vector for target gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Xiaoran Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Wenbo Su
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University, No. 38, Xueyuan Rd, Beijing 100191, China
| |
Collapse
|
12
|
Kraft L, Ribeiro VST, de Nazareno Wollmann LCF, Suss PH, Tuon FF. Determination of antibiotics and detergent residues in decellularized tissue-engineered heart valves using LC-MS/MS. Cell Tissue Bank 2020; 21:573-584. [PMID: 32809090 DOI: 10.1007/s10561-020-09856-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/08/2020] [Indexed: 11/24/2022]
Abstract
Residual chemicals that are presented during tissue processing in human tissue banks can be a risk for the allograft recipient. Determine the residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months. A total of 24 human decellularized allografts were stored in sterile sodium chloride and analyzed immediately after the decellularization process (0 months) and after storage for 6, 12, and 18 months, which includes the use of sodium dodecyl sulfate (SDS) and antibiotics (cefoxitin, vancomycin hydrochloride, lincomycin hydrochloride, polymyxin B sulfate). These valves were used for suitability tests, the zone of inhibition evaluation, and direct contact cytotoxicity assay. The stock solution from 32 valves was used for LC-MS/MS analysis of antibiotics and SDS. Tissue samples from decellularized valves showed a zone of inhibition formation for S. aureus and B. subtilis, suggesting the presence of an inhibitory molecule in the tissue. Cytotoxicity tests were negative. Polymyxin B, vancomycin, and SDS were detected and quantified in human decellularized aortic and pulmonary allografts during all periods of the study. There were no traces of residual cefoxitin and lincomycin in the tissue stock solution. We found residual concentrations of the antibiotics and detergent used in the process of human decellularized tissue-engineered heart valves stored in isotonic saline solution up to 18 months.
Collapse
Affiliation(s)
- Leticia Kraft
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | | | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil
| | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição, 1155, Curitiba, PR, 80215-901, Brazil. .,Human Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
13
|
Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead. Anal Bioanal Chem 2020; 412:6037-6058. [PMID: 32206847 DOI: 10.1007/s00216-020-02559-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Supramolecular solvents (SUPRAS) have progressively become a suitable alternative to organic solvents for sample preparation in chromatographic analysis. The inherent properties of these nanostructured solvents (e.g. different polarity microenvironments, multiple binding sites, possibility of tailoring their properties, etc.) offer multiple opportunities for the development of innovative sample treatment platforms not approachable by conventional solvents. In this review, major achievements attained in the combination SUPRAS-chromatography in the last 20 years as well as the challenges that should be addressed in the near future are critically discussed. Among achievements, particular attention is paid to the theoretical and practical knowledge gained that has helped make substantial progress in the area. In this respect, advances in the understanding of the mechanisms involved in SUPRAS formation and SUPRAS-solute interactions driving extractions are discussed, with a view to the setting up of knowledge-based extraction procedures. Likewise, the strategies followed to improve the compatibility of SUPRAS extracts with liquid and gas chromatography and adapt SUPRAS-based extractions to different formats are presented. Ongoing efforts to apply SUPRAS in multicomponent extractions and synthesize tailored SUPRAS for the development of innovative sample treatments are highlighted. Among challenges identified, discussion is focused on the automation of SUPRAS-based sample treatment and the elucidation of SUPRAS nanostructures, which are considered essential for their acceptance in routine labs and the design of tailored SUPRAS with programmed functions. Graphical abstract.
Collapse
|
14
|
Jana R, Maity B, Seth D. Structural transition dynamics of biologically active flavins in alkylglucoside surfactants aggregates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117346. [PMID: 31344577 DOI: 10.1016/j.saa.2019.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/24/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The photophysics and structural transition dynamics of a bio-active flavin lumichrome (LM) entrapped in two sugars based neutral surfactants were reported. Sugar-based surfactants, which were used for research purpose are potential environmentally friendly, green alternative amphiphilic surface active substance compared to other kinds of common surfactants. Here, two alkyl glucoside surfactants n-octyl-β-D-glucopyranoside (OBG) and n-octyl-β-D-thioglucopyranoside (OBTG) were used. This work is carried out by using steady-state absorption and fluorescence emission spectroscopy along with time-resolved fluorescence emission techniques. Photophysics of LM was modulated several folds in these two sugar-based neutral micelles. LM exhibits excitation and emission wavelength dependent fluorescence properties in these two sugars based neutral micelles. LM confined in the micellar environments exhibited structural transition dynamism, i.e. different kinds of conformers are equilibrated. Herein, different conformers of LM are identified and explained with the help of spectroscopic methods. From the fluorescence anisotropy measurement, it was found that the rotational relaxation time of LM in OBG micelle was more compared to that in OBTG micelle, which indicates that the LM molecule faced much more constrained environment in OBG micellar media.
Collapse
Affiliation(s)
- Rabindranath Jana
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | | | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India.
| |
Collapse
|
15
|
Awad D, Brueck T. Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus. Anal Bioanal Chem 2020; 412:449-462. [PMID: 31797019 PMCID: PMC6992551 DOI: 10.1007/s00216-019-02254-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 11/03/2022]
Abstract
In the last decades, microbial oils have been extensively investigated as a renewable platform for biofuel and oleochemical production. Offering a potent alternative to plant-based oils, oleaginous microorganisms have been the target of ongoing metabolic engineering aimed at increasing growth and lipid yields, in addition to specialty fatty acids. Discovery proteomics is an attractive tool for elucidating lipogenesis and identifying metabolic bottlenecks, feedback regulation, and competing biosynthetic pathways. One prominent microbial oil producer is Cutaneotrichosporon oleaginosus, due to its broad feedstock catabolism and high lipid yield. However, this yeast has a recalcitrant cell wall and high cell lipid content, which complicates efficient and unbiased protein extraction for downstream proteomic analysis. Optimization efforts of protein sample preparation from C. oleaginosus in the present study encompasses the comparison of 8 lysis methods, 13 extraction buffers, and 17 purification methods with respect to protein abundance, proteome coverage, applicability, and physiochemical properties (pI, MW, hydrophobicity in addition to COG, and GO analysis). The optimized protocol presented in this work entails a one-step extraction method utilizing an optimal lysis method (liquid homogenization), which is augmented with a superior extraction buffer (50 mM Tris, 8/2 M Urea/Thiourea, and 1% C7BzO), followed by either of 2 advantageous purification methods (hexane/ethanol or TCA/acetone), depending on subsequent applications and target studies. This work presents a significant step forward towards implementation of efficient C. oleaginosus proteome mining for the identification of potential targets for genetic optimization of this yeast to improve lipogenesis and production of specialty lipids. Graphical abstract.
Collapse
Affiliation(s)
- Dania Awad
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Thomas Brueck
- Werner Siemens-Lehrstuhl für Synthetische Biotechnologie, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
16
|
Yoneten KK, Kasap M, Akpinar G, Kanli A, Karaoz E. Comparative Proteomics Analysis of Four Commonly Used Methods for Identification of Novel Plasma Membrane Proteins. J Membr Biol 2019; 252:587-608. [PMID: 31346646 DOI: 10.1007/s00232-019-00084-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
Plasma membrane proteins perform a variety of important tasks in the cells. These tasks can be diverse as carrying nutrients across the plasma membrane, receiving chemical signals from outside the cell, translating them into intracellular action, and anchoring the cell in a particular location. When these crucial roles of plasma membrane proteins are considered, the need for their characterization becomes inevitable. Certain characteristics of plasma membrane proteins such as hydrophobicity, low solubility, and low abundance limit their detection by proteomic analyses. Here, we presented a comparative proteomics study in which the most commonly used plasma membrane protein enrichment methods were evaluated. The methods that were utilized include biotinylation, selective CyDye labeling, temperature-dependent phase partition, and density-gradient ultracentrifugation. Western blot analysis was performed to assess the level of plasma membrane protein enrichment using plasma membrane and cytoplasmic protein markers. Quantitative evaluation of the level of enrichment was performed by two-dimensional electrophoresis (2-DE) and benzyldimethyl-n-hexadecylammonium chloride/sodium dodecyl sulfate polyacrylamide gel electrophoresis (16-BAC/SDS-PAGE) from which the protein spots were cut and identified. Results from this study demonstrated that density-gradient ultracentrifugation method was superior when coupled with 16-BAC/SDS-PAGE. This work presents a valuable contribution and provides a future direction to the membrane sub-proteome research by evaluating commonly used methods for plasma membrane protein enrichment.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey.
| | - Gurler Akpinar
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Aylin Kanli
- Department of Medical Biology, School of Medicine, Kocaeli University, 41380, Kocaeli, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, School of Medicine, Istinye University, 34010, Istanbul, Turkey
| |
Collapse
|
17
|
Aqueous two-phase systems for cephalexin monohydrate partitioning using poly ethylene glycol and sodium tartrate dihydrate: Experimental and thermodynamic modeling. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0256-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Koolivand A, Azizi M, O’Brien A, Khaledi MG. Coacervation of Lipid Bilayer in Natural Cell Membranes for Extraction, Fractionation, and Enrichment of Proteins in Proteomics Studies. J Proteome Res 2019; 18:1595-1606. [DOI: 10.1021/acs.jproteome.8b00857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir Koolivand
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mohammadmehdi Azizi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ariel O’Brien
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Morteza G. Khaledi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
19
|
Ramirez D, Collins CD. Maximisation of oil recovery from an oil-water separator sludge: Influence of type, concentration, and application ratio of surfactants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 82:100-110. [PMID: 30509571 DOI: 10.1016/j.wasman.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Worldwide the generation of oil sludges is approximately 160 million metric tonnes per annum. The washing of oil sludge with surfactant solutions can be used to recover the oil and reused as a feedstock for fuel production. There is a need to establish the influence of the surfactant type, concentration, and application (surfactant to oil sludge, S/OS) ratio to oil sludge for the maximisation of oil recovery. This study presented the oil recovery rates from the washing of an oil-water separator sludge using surfactants, Triton X-100, sodium dodecyl sulphate (SDS), Tween 80, rhamnolipid, and Triton X-114. The surfactants were characterised by critical micelle concentration (CMC), micelle size, and surface activity. A Taguchi experimental design was applied to reduce the number of experimental runs. In general, Triton X-100 and X-114, and rhamnolipid had higher micelle sizes and surfactant activities which resulted in higher oil recoveries. The key role of the surfactants in the washing was evidenced because the ORR values with the surfactants were significantly higher than the value with the control with no surfactant solution. The S/OS ratio was the factor with the largest effect on the Taguchi signal-to-noise ratio (an indicator of variation) of the oil recovery rate. The levels with the maximum recovery rate were 1:1 S/OS, 2CMC of surfactant concentration and Triton X-100 (32% ± 5), Triton X-114 (30% ± 7), and rhamnolipid (29% ± 8). In conclusion, less surfactant solution (1:1 S/OS) and low surfactant concentration (≤2CMC) provided the maximum oil recovery from this type of oil sludge. To our knowledge, no previous study with surfactants has reported low oil recovery values at high S/OS ratios in the oil sludge washing.
Collapse
Affiliation(s)
- Diego Ramirez
- Soil Research Centre, University of Reading, Reading RG6 6DW, UK.
| | - Chris D Collins
- Soil Research Centre, University of Reading, Reading RG6 6DW, UK.
| |
Collapse
|
20
|
Wu CH, Schut GJ, Poole FL, Haja DK, Adams MWW. Characterization of membrane-bound sulfane reductase: A missing link in the evolution of modern day respiratory complexes. J Biol Chem 2018; 293:16687-16696. [PMID: 30181217 DOI: 10.1074/jbc.ra118.005092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
Hyperthermophilic archaea contain a hydrogen gas-evolving,respiratory membrane-bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and V max values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (E o' = -480 mV) to reduce sulfane sulfur (E o' -260 mV) and cleave organic (RS n R, n ≥ 3) and anionic polysulfides (S n 2-, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.
Collapse
Affiliation(s)
- Chang-Hao Wu
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Farris L Poole
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Dominik K Haja
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
21
|
Hu S, Musante L, Tataruch D, Xu X, Kretz O, Henry M, Meleady P, Luo H, Zou H, Jiang Y, Holthofer H. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning. J Proteome Res 2017; 17:86-96. [PMID: 29090927 DOI: 10.1021/acs.jproteome.7b00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.
Collapse
Affiliation(s)
- Shuiwang Hu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | | | | | - Xiaomeng Xu
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Oliver Kretz
- III. Medical Clinic, University Hospital Hamburg-Eppendorf , Hamburg, Germany
| | | | | | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Hequn Zou
- Institute of Nephrology and Urology, The Third Affiliated Hospital, Southern Medical University , Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University , Guangzhou, China
| | - Harry Holthofer
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University , Freiburg, Germany
| |
Collapse
|
22
|
Abstract
To study integral membrane proteins, one has to extract them from the membrane—the step that is typically achieved by the application of detergents. In this mini-review, we summarize the top 10 detergents used for the structural analysis of membrane proteins based on the published results. The aim of this study is to provide the reader with an overview of the main properties of available detergents (critical micelle concentration (CMC) value, micelle size, etc.) and provide an idea of what detergents to may merit further study. Furthermore, we briefly discuss alternative solubilization and stabilization agents, such as polymers.
Collapse
|
23
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
24
|
Conley L, Tao Y, Henry A, Koepf E, Cecchini D, Pieracci J, Ghose S. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation. Biotechnol Bioeng 2016; 114:813-820. [PMID: 27800626 DOI: 10.1002/bit.26209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/27/2016] [Accepted: 10/28/2016] [Indexed: 01/29/2023]
Abstract
Inclusion of a detergent in protein biotherapeutic purification processes is a simple and very robust method for inactivating enveloped viruses. The detergent Triton X-100 has been used for many years and is part of the production process of several commercial therapeutic proteins. However, recent ecological studies have suggested that Triton X-100 and its break-down products can potentially behave as endocrine disrupters in aquatic organisms, raising concerns from an environmental impact perspective. As such, discharge of Triton X-100 into the waste water treatment plants is regulated in some jurisdictions, and alternative detergents for viral inactivation are required. In this work, we report on the identification and evaluation of more eco-friendly detergents as viable replacements for Triton X-100. Five detergent candidates with low to moderate environmental impact were initially identified and evaluated with respect to protein stability, followed by proof-of-concept virus inactivation studies using a model enveloped virus. From the set of candidates lauryldimethylamine N-oxide (LDAO) was identified as the most promising detergent due to its low ecotoxicity, robust anti-viral activity (LRV >4 at validation set-point conditions with X-MuLX), and absence of any negative impact on protein function. This detergent exhibited effective and robust virus inactivation in a broad range of protein concentrations, solution conductivities, pHs, and in several different cell culture fluid matrices. The only process parameter which correlated with reduced virus inactivation potency was LDAO concentration, and then only when the concentration was reduced to below the detergent's critical micelle concentration (CMC). Additionally, this work also demonstrated that LDAO was cleared to below detectable levels after Protein A affinity chromatography, making it suitable for use in a platform process that utilizes this chromatographic mode for protein capture. All these findings suggest that LDAO may be a practical alternative to Triton X-100 for use in protein therapeutic production processes for inactivating enveloped viruses. Biotechnol. Bioeng. 2017;114: 813-820. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lynn Conley
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | - Yinying Tao
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, Indiana
| | - Alexis Henry
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | - Edward Koepf
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| | | | - John Pieracci
- Process Biochemistry, Biogen, Cambridge, Massachusetts
| | - Sanchayita Ghose
- Process Biochemistry, Biogen, 5000 Davis Drive, Research Triangle Park 27709, North Carolina
| |
Collapse
|
25
|
Siposova K, Kozar T, Musatov A. Interaction of nonionic detergents with the specific sites of lysozyme amyloidogenic region - inhibition of amyloid fibrillization. Colloids Surf B Biointerfaces 2016; 150:445-455. [PMID: 27842932 DOI: 10.1016/j.colsurfb.2016.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
Abstract
Two nonionic detergents, Triton X-100 (TX-100) and n-dodecyl-β-d-maltoside (DDM) were tested for their ability to affect lysozyme amyloid aggregation. We have demonstrated that fibrillization of lysozyme is completely inhibited by low sub-micellar concentrations of both of these detergents. The apparent IC50 values were calculated to be 22μM and 26μM for TX-100 and DDM, respectively. The detergent/protein ratio is not the only parameter controlling inhibition. The precise timing of the detergent addition was found to be also crucial. It appears that the primary inhibitory activity of detergents resulted from inhibition of nuclei formation, in addition to inhibition of fibril polymerization at the early stage of protofibrils growth. The docking study revealed that Asn-59, Trp-63 and Ala-107, all present within the lysozyme amyloidogenic region, were involved in the interaction with both detergents. In addition, TX-100 also interacted with Gln-57 and Asp-103 within lysozyme. Moreover, based on our computational results, TX-100 bridges the Gln-57 and Ala-107 amino acids of the amyloidogenic segment of lysozyme and therefore inhibits more effectively the amyloid fibril formation. Along these lines, the knowledge gained from our study indicates that the detergents or their derivatives may be applicable as a promising strategy for the modulation of lysozyme protein aggregation.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia.
| | - Tibor Kozar
- Center for multimodal imaging, Institute of Physics, Faculty of Science, P.J. Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| |
Collapse
|
26
|
Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept. J Struct Biol 2016; 195:379-386. [DOI: 10.1016/j.jsb.2016.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022]
|
27
|
Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9. Arch Virol 2016; 161:3203-13. [PMID: 27568015 DOI: 10.1007/s00705-016-3028-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/22/2016] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE), glycoprotein I (gI), and Us9 promote efficient anterograde axonal transport of virus from the neuron cytoplasm to the axon terminus. HSV-1 and PRV gE and gI form a heterodimer that is required for anterograde transport, but an association that includes Us9 has not been demonstrated. NS-gE380 is an HSV-1 mutant that has five amino acids inserted after gE residue 380, rendering it defective in anterograde axonal transport. We demonstrated that gE, gI and Us9 form a trimolecular complex in Vero cells infected with NS-gE380 virus in which gE binds to both Us9 and gI. We detected the complex using immunoprecipitation with anti-gE or anti-gI monoclonal antibodies in the presence of ionic detergents. Under these conditions, Us9 did not associate with gE in cells infected with wild-type HSV-1; however, using a nonionic detergent, TritonX-100, an association between Us9 and gE was detected in immunoprecipitates of both wild-type and NS-gE380-infected cells. The results suggest that the interaction between Us9 and gE is weak and disrupted by ionic detergents in wild-type infected cells. We postulate that the tight interaction between Us9 and gE leads to the anterograde spread defect in the NS-gE380 virus.
Collapse
|
28
|
Vit O, Petrak J. Integral membrane proteins in proteomics. How to break open the black box? J Proteomics 2016; 153:8-20. [PMID: 27530594 DOI: 10.1016/j.jprot.2016.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
Integral membrane proteins (IMPs) are coded by 20-30% of human genes and execute important functions - transmembrane transport, signal transduction, cell-cell communication, cell adhesion to the extracellular matrix, and many other processes. Due to their hydrophobicity, low expression and lack of trypsin cleavage sites in their transmembrane segments, IMPs have been generally under-represented in routine proteomic analyses. However, the field of membrane proteomics has changed markedly in the past decade, namely due to the introduction of filter assisted sample preparation (FASP), the establishment of cell surface capture (CSC) protocols, and the development of methods that enable analysis of the hydrophobic transmembrane segments. This review will summarize the recent developments in the field and outline the most successful strategies for the analysis of integral membrane proteins. SIGNIFICANCE Integral membrane proteins (IMPs) are attractive therapeutic targets mostly due to their many important functions. However, our knowledge of the membrane proteome is severely limited to effectively exploit their potential. This is mostly due to the lack of appropriate techniques or methods compatible with the typical features of IMPs, namely hydrophobicity, low expression and lack of trypsin cleavage sites. This review summarizes the most recent development in membrane proteomics and outlines the most successful strategies for their large-scale analysis.
Collapse
Affiliation(s)
- O Vit
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - J Petrak
- BIOCEV, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
29
|
Streamlined Membrane Proteome Preparation for Shotgun Proteomics Analysis with Triton X-100 Cloud Point Extraction and Nanodiamond Solid Phase Extraction. MATERIALS 2016; 9:ma9050385. [PMID: 28773508 PMCID: PMC5503057 DOI: 10.3390/ma9050385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022]
Abstract
While mass spectrometry (MS) plays a key role in proteomics research, characterization of membrane proteins (MP) by MS has been a challenging task because of the presence of a host of interfering chemicals in the hydrophobic protein extraction process, and the low protease digestion efficiency. We report a sample preparation protocol, two-phase separation with Triton X-100, induced by NaCl, with coomassie blue added for visualizing the detergent-rich phase, which streamlines MP preparation for SDS-PAGE analysis of intact MP and shot-gun proteomic analyses. MP solubilized in the detergent-rich milieu were then sequentially extracted and fractionated by surface-oxidized nanodiamond (ND) at three pHs. The high MP affinity of ND enabled extensive washes for removal of salts, detergents, lipids, and other impurities to ensure uncompromised ensuing purposes, notably enhanced proteolytic digestion and down-stream mass spectrometric (MS) analyses. Starting with a typical membranous cellular lysate fraction harvested with centrifugation/ultracentrifugation, MP purities of 70%, based on number (not weight) of proteins identified by MS, was achieved; the weight-based purity can be expected to be much higher.
Collapse
|
30
|
Orwick‐Rydmark M, Arnold T, Linke D. The Use of Detergents to Purify Membrane Proteins. ACTA ACUST UNITED AC 2016; 84:4.8.1-4.8.35. [DOI: 10.1002/0471140864.ps0408s84] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Thomas Arnold
- Boehringer‐Ingelheim Veterinary Research Center Hannover Germany
| | - Dirk Linke
- University of Oslo, Department of Biosciences Oslo Norway
| |
Collapse
|
31
|
Feroz H, Vandervelden C, Ikwuagwu B, Ferlez B, Baker CS, Lugar DJ, Grzelakowski M, Golbeck JH, Zydney AL, Kumar M. Concentrating membrane proteins using ultrafiltration without concentrating detergents. Biotechnol Bioeng 2016; 113:2122-30. [PMID: 27563851 DOI: 10.1002/bit.25973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins (MPs) are of rapidly growing interest in the design of pharmaceutical products, novel sensors, and synthetic membranes. Ultrafiltration (UF) using commercially available centrifugal concentrators is typically employed for laboratory-scale concentration of low-yield MPs, but its use is accompanied by a concomitant increase in concentration of detergent micelles. We present a detailed analysis of the hydrodynamic processes that control detergent passage during ultrafiltration of MPs and propose methods to optimize detergent passage during protein concentration in larger-scale membrane processes. Experiments were conducted using nonionic detergents, octyl-β-D glucoside (OG), and decyl-β-D maltoside (DM) with the bacterial water channel protein, Aquaporin Z (AqpZ) and the light driven chloride pump, halorhodopsin (HR), respectively. The observed sieving coefficient (So ), a measure of detergent passage, was evaluated in both stirred cell and centrifugal systems. So for DM and OG increased with increasing filtrate flux and decreasing shear rates in the stirred cell, that is, with increasing concentration polarization (CP). Similar effects were observed during filtration of MP-detergent (MPD) micelles. However, lower transmission was observed in the centrifugal system for both detergent and MPD systems. This is attributed to free convection-induced shear and hence reduced CP along the membrane surface during centrifugal UF. Thus to concentrate MPs without retention of detergent, design of UF systems that promote CP is required. Biotechnol. Bioeng. 2016;113: 2122-2130. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, 155 Fenske Laboratory, University Park, Pennsylvania, 16802
| | - Craig Vandervelden
- Department of Chemical Engineering, The Pennsylvania State University, 155 Fenske Laboratory, University Park, Pennsylvania, 16802
| | - Bon Ikwuagwu
- Department of Chemical Engineering, The Pennsylvania State University, 155 Fenske Laboratory, University Park, Pennsylvania, 16802
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Carol S Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Daniel J Lugar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, 155 Fenske Laboratory, University Park, Pennsylvania, 16802
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, 155 Fenske Laboratory, University Park, Pennsylvania, 16802.
| |
Collapse
|
32
|
Reuter LJ, Conley AJ, Joensuu JJ. Continuous Flow Separation of Hydrophobin Fusion Proteins from Plant Cell Culture Extract. Methods Mol Biol 2016; 1385:189-97. [PMID: 26614291 DOI: 10.1007/978-1-4939-3289-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fusion to fungal hydrophobins has proven to be a useful tool to enhance accumulation and recovery of recombinant proteins in plants. Aqueous two-phase separation (ATPS) is an attractive system to capture hydrophobin fusion proteins from plant extracts. The process can simultaneously purify and concentrate target protein with minimal background. ATPS avoids the use of chromatographic column steps, can be carried out in a short time frame, and is amenable to industrial-scale protein purification. A drawback of performing ATPS in large volumes is the lengthy time required for phase separation; however, this can be avoided by incorporating continuous systems, which are often preferred by the processing industry. This method chapter illustrates the capture of GFP-HFBI hydrophobin fusion protein from BY-2 plant cell suspension extract using a semi-continuous ATPS method.
Collapse
Affiliation(s)
- Lauri J Reuter
- VTT Technical Research Centre of Finland, Industrial Biotechnology, Tietotie 2, Espoo, 1000, 02044 VTT, Finland
| | - Andrew J Conley
- VTT Technical Research Centre of Finland, Industrial Biotechnology, Tietotie 2, Espoo, 1000, 02044 VTT, Finland
| | - Jussi J Joensuu
- VTT Technical Research Centre of Finland, Industrial Biotechnology, Tietotie 2, Espoo, 1000, 02044 VTT, Finland.
| |
Collapse
|
33
|
Detergents in Membrane Protein Purification and Crystallisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:13-28. [PMID: 27553232 DOI: 10.1007/978-3-319-35072-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.
Collapse
|
34
|
Masoomi Dezfooli S, Tan WS, Tey BT, Ooi CW, Hussain SA. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system. Biotechnol Prog 2015; 32:171-7. [DOI: 10.1002/btpr.2192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/28/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Seyedehsara Masoomi Dezfooli
- Laboratory of Vaccine and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Wen Siang Tan
- Laboratory of Vaccine and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering; Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
- Multidisciplinary Platform of Advanced Engineering; Monash University Malaysia, Jalan Lagoon Selatan; Bandar Sunway 47500 Selangor Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering; Monash University Malaysia; Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
- Multidisciplinary Platform of Advanced Engineering; Monash University Malaysia, Jalan Lagoon Selatan; Bandar Sunway 47500 Selangor Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering; Universiti Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
35
|
Ruiz CC, Hierrezuelo JM, Molina-Bolivar JA. Analysis of the Photophysical Behavior and Rotational-Relaxation Dynamics of Coumarin 6 in Nonionic Micellar Environments: The Effect of Temperature. Molecules 2015; 20:19343-60. [PMID: 26512635 PMCID: PMC6332106 DOI: 10.3390/molecules201019343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/08/2015] [Accepted: 10/16/2015] [Indexed: 12/25/2022] Open
Abstract
The photodynamics of Coumarin 6 have been investigated in three nonionic micellar assemblies, i.e., n-dodecyl-β-D-maltoside (β-C12G₂), p-tert-octyl-phenoxy polyethylene (9.5) ether (Triton X-100 or TX100) and n-dodecyl-hexaethylene-glycol (C12E₆), to assess their potential use as encapsulation vehicles for hydrophobic drugs. To evaluate the effect of the micellar size and hydration, the study used a broad temperature range (293.15-323.15 K). The data presented here include steady-state absorption and emission spectra of the probe, dynamic light scattering, together with fluorescence lifetimes and both steady-state, as well as time-resolved fluorescence anisotropies. The time-resolved fluorescence anisotropy data were analyzed on the basis of the well-established two-step model. Our data reveal that the molecular probe in all of the cases is solubilized in the hydration layer of micelles, where it would sense a relatively polar environment. However, the probe was found to undergo a slower rotational reorientation when solubilized in the alkylpolyglycoside surfactant, as a result of a more compact microenvironment around the probe. The behavior of the parameters of the reorientation dynamics with temperature was analyzed on the basis of both micellar hydration and the head-group flexibility of the surfactants.
Collapse
Affiliation(s)
- Cristóbal Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Malaga, Malaga 29071, Spain.
| | - José Manuel Hierrezuelo
- Department of Applied Physics II, Engineering School, University of Malaga, Malaga 29071, Spain.
| | | |
Collapse
|
36
|
Triton X-114 cloud point extraction to subfractionate blood plasma proteins for two-dimensional gel electrophoresis. Anal Biochem 2015; 485:11-7. [DOI: 10.1016/j.ab.2015.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 11/21/2022]
|
37
|
Hierrezuelo JM, Carnero Ruiz C. Exploring the affinity binding of alkylmaltoside surfactants to bovine serum albumin and their effect on the protein stability: A spectroscopic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:156-65. [PMID: 26042703 DOI: 10.1016/j.msec.2015.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/23/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
Abstract
Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.
Collapse
Affiliation(s)
- J M Hierrezuelo
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain
| | - C Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Malaga, 29071 Malaga, Spain.
| |
Collapse
|
38
|
Dutta S, Nair DK, Namboothiri INN, Wachtel E, Friedman N, Sheves M, Patchornik G. Engineered-membranes and engineered-micelles as efficient tools for purification of halorhodopsin and bacteriorhodopsin. Analyst 2015; 140:204-12. [DOI: 10.1039/c4an01423e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe two alternative and complementary purification methods for halorhodopsin and bacteriorhodopsin.
Collapse
Affiliation(s)
- Sansa Dutta
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Divya K. Nair
- Department of Chemistry
- Indian Institute of Technology
- Bombay
- India
| | | | - Ellen Wachtel
- Chemical Research Infrastructure Unit
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Noga Friedman
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Mordechai Sheves
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Guy Patchornik
- Department of Biological Chemistry
- Ariel University
- Ariel
- Israel
| |
Collapse
|
39
|
Wu D, Spulber M, Itel F, Chami M, Pfohl T, Palivan CG, Meier W. Effect of Molecular Parameters on the Architecture and Membrane Properties of 3D Assemblies of Amphiphilic Copolymers. Macromolecules 2014. [DOI: 10.1021/ma500511r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dalin Wu
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Mariana Spulber
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Fabian Itel
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Mohamed Chami
- Centre
for Cellular Imaging and Nano Analytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Thomas Pfohl
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
40
|
Boggs JM, Homchaudhuri L, Ranagaraj G, Liu Y, Smith GST, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes 2014; 7:387. [PMID: 24956930 PMCID: PMC4078013 DOI: 10.1186/1756-0500-7-387] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/18/2014] [Indexed: 12/13/2022] Open
Abstract
Background The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14–21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible for formation of the multilayered myelin sheath in the central nervous system. The predominant membrane-associated isoform of MBP is not simply a structural component of compact myelin but is highly post-translationally modified and multi-functional, having interactions with numerous proteins such as Ca2+-calmodulin, and with actin, tubulin, and proteins with SH3-domains, which it can tether to a lipid membrane in vitro. It co-localizes with such proteins in primary oligodendrocytes (OLGs) and in early developmental N19-OLGs transfected with fluorescently-tagged MBP. Results To provide further evidence for MBP associations with these proteins in vivo, we show here that MBP isoforms are co-immunoprecipitated from detergent extracts of primary OLGs together with actin, tubulin, zonula occludens 1 (ZO-1), cortactin, and Fyn kinase. We also carry out live-cell imaging of N19-OLGs co-transfected with fluorescent MBP and actin, and show that when actin filaments re-assemble after recovery from cytochalasin D treatment, MBP and actin are rapidly enriched and co-localized at certain sites at the plasma membrane and in newly-formed membrane ruffles. The MBP and actin distributions change similarly with time, suggesting a specific and dynamic association. Conclusions These results provide more direct evidence for association of the predominant 18.5-kDa MBP isoform with these proteins in primary OLGs and in live cells than previously could be inferred from co-localization observations. This study supports further a role for classic MBP isoforms in protein-protein interactions during membrane and cytoskeletal extension and remodeling in OLGs.
Collapse
Affiliation(s)
- Joan M Boggs
- Molecular Structure and Function Program, Research Institute, Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Gecchele E, Schillberg S, Merlin M, Pezzotti M, Avesani L. A downstream process allowing the efficient isolation of a recombinant amphiphilic protein from tobacco leaves. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:34-42. [PMID: 24786219 DOI: 10.1016/j.jchromb.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
Abstract
The 65-kDa isoform of human glutamic acid decarboxylase (hGAD65) is a major autoantigen in autoimmune diabetes. The heterologous production of hGAD65 for diagnostic and therapeutic applications is hampered by low upstream productivity and the absence of a robust and efficient downstream process for product isolation. A tobacco-based platform has been developed for the production of an enzymatically-inactive form of the protein (hGAD65mut), but standard downstream processing strategies for plant-derived recombinant proteins cannot be used in this case because the product is amphiphilic. We therefore evaluated different extraction buffers and an aqueous micellar two-phase system (AMTPS) to optimize the isolation and purification of hGAD65mut from plants. We identified the extraction conditions offering the greatest selectivity for hGAD65mut over native tobacco proteins using a complex experimental design approach. Under our optimized conditions, the most efficient initial extraction and partial purification strategy achieved an overall hGAD65mut yield of 92.5% with a purification factor of 12.3 and a concentration factor of 23.8. The process also removed a significant quantity of phenols, which are major contaminants present in tobacco tissue. This is the first report describing the use of AMTPS for the partial purification of an amphiphilic recombinant protein from plant tissues and our findings could also provide a working model for the initial recovery and partial purification of hydrophobic recombinant proteins from transgenic tobacco plants.
Collapse
Affiliation(s)
- Elisa Gecchele
- University of Verona, Department of Biotechnology, Verona, Italy
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Matilde Merlin
- University of Verona, Department of Biotechnology, Verona, Italy
| | - Mario Pezzotti
- University of Verona, Department of Biotechnology, Verona, Italy
| | - Linda Avesani
- University of Verona, Department of Biotechnology, Verona, Italy.
| |
Collapse
|
42
|
Tan Z, Abe H. Polymer Microstructures Self-Assemble on Single-Walled Carbon Nanotube Thin Films. ACS Macro Lett 2014; 3:35-39. [PMID: 35632866 DOI: 10.1021/mz400502v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of self-assembled microstructures of anionic polyelectrolyte, poly(acrylic acid) salts, on the surface of single-walled carbon nanotube thin films was studied by a fast phase separation process that filtrated a mixed dispersion composed of single-walled carbon nanotubes and poly(acrylic acid) derivatives on a membrane filter. The resulting microstructures of poly(acrylic acid) self-assembly were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, element mapping, and diffuse reflectance Fourier transform infrared spectroscopy. The influence factors including substrate, ion species, single-walled carbon nanotubes, and different kinds of carbon nanotubes were discussed comprehensively for the formation of microstructures of PAA self-assembly by a liquid-liquid phase separation.
Collapse
Affiliation(s)
- Zhenquan Tan
- Joining and Welding Research
Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroya Abe
- Joining and Welding Research
Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
43
|
Ramalakshmi S, Ooi CW, Ariff AB, Ramanan RN. Colorimetric quantification of sucrose in presence of thermo-sensitive polymers present in aqueous two-phase systems. MethodsX 2014; 1:229-32. [PMID: 26150957 PMCID: PMC4472962 DOI: 10.1016/j.mex.2014.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
The use of biodegradable material such as simple carbohydrates and recyclable material such as thermo-sensitive polymers is in need to develop a sustainable aqueous two-phase system (ATPS) for the purification of biomolecules. Accurate determination of sucrose concentration is important in liquid–liquid equilibrium (LLE) study of carbohydrate-based ATPS. The well-established phenol–sulfuric acid method has been widely employed in the measurement of carbohydrate concentration. However, the presence of thermo-sensitive polymers, which has a lower critical solution temperature (LCST) below room temperature, in carbohydrate samples could hamper the precision of spectrophotometric analysis due to the formation of two phases or cloudiness in the sample. Thus, the following modifications were made in an attempt to eliminate the interference occurred during conventional phenol–sulfuric acid assay.The modified assay for sucrose quantification was performed at an ice-cold temperature throughout the reaction in order to avoid the interference from thermo-sensitive polymers. This method required a sample volume of 3 μL and hence the volume of other reagents employed was also considerably reduced. The absorbance was measured at 520 nm which allowed a longer linearity range (0.05–7.5%, w/v).
Collapse
Affiliation(s)
- Subbarayalu Ramalakshmi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia ; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
44
|
Vantomme G, Hafezi N, Lehn JM. A light-induced reversible phase separation and its coupling to a dynamic library of imines. Chem Sci 2014. [DOI: 10.1039/c3sc53130a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Irradiation of an acetonitrile–water solution of the bis-pyridyl hydrazone 1 and calcium chloride causes a photo-induced phase separation. It is coupled to a covalent library of imines, undergoing constitutional reorganization upon phase separation.
Collapse
Affiliation(s)
- Ghislaine Vantomme
- Laboratoire de Chimie Supramoléculaire
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)
- Université de Strasbourg
- 67000 Strasbourg, France
| | - Nema Hafezi
- Laboratoire de Chimie Supramoléculaire
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)
- Université de Strasbourg
- 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS)
- Université de Strasbourg
- 67000 Strasbourg, France
| |
Collapse
|
45
|
Abstract
If working with membrane proteins, practically all biochemical techniques can be used as for soluble proteins, the important point being that detergents must be added to keep the membrane proteins in solution. This protocol is meant to help in choosing the right detergent for a given application.
Collapse
|
46
|
Patchornik G, Danino D, Kesselman E, Wachtel E, Friedman N, Sheves M. Purification of a membrane protein with conjugated engineered micelles. Bioconjug Chem 2013; 24:1270-5. [PMID: 23758098 DOI: 10.1021/bc400069w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A novel method for purifying membrane proteins is presented. The approach makes use of engineered micelles composed of a nonionic detergent, β-octylglucoside, and a hydrophobic metal chelator, bathophenanthroline. Via the chelators, the micelles are specifically conjugated, i.e., tethered, in the presence of Fe(2+) ions, thereby forming micellar aggregates which provide the environment for separation of lipid-soluble membrane proteins from water-soluble proteins. The micellar aggregates (here imaged by cryo-transmission electron microscopy) successfully purify the light driven proton pump, bacteriorhodopsin (bR), from E. coli lysate. Purification takes place within 15 min and can be performed both at room temperature and at 4 °C. More than 94% of the water-soluble macromolecules in the lysate are excluded, with recovery yields of the membrane protein ranging between 74% and 85%. Since this approach does not require precipitants, high concentrations of detergent to induce micellar aggregates, high temperature, or changes in pH, it is suggested that it may be applied to the purification of a wide variety of membrane proteins.
Collapse
Affiliation(s)
- Guy Patchornik
- Department of Biological Chemistry, Ariel University, 70400, Israel.
| | | | | | | | | | | |
Collapse
|
47
|
Ruiz CC, Molina-Bolívar JA, Hierrezuelo JM, Liger E. Self-assembly, surface activity and structure of n-octyl-β-D-thioglucopyranoside in ethylene glycol-water mixtures. Int J Mol Sci 2013; 14:3228-53. [PMID: 23385232 PMCID: PMC3588041 DOI: 10.3390/ijms14023228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022] Open
Abstract
The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-d-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153). Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.
Collapse
Affiliation(s)
- Cristóbal Carnero Ruiz
- Department of Applied Physics II, Engineering School, University of Málaga, Málaga 29071, Spain.
| | | | | | | |
Collapse
|
48
|
Vuckovic D, Dagley LF, Purcell AW, Emili A. Membrane proteomics by high performance liquid chromatography-tandem mass spectrometry: Analytical approaches and challenges. Proteomics 2013; 13:404-23. [DOI: 10.1002/pmic.201200340] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/24/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Dajana Vuckovic
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
| | - Laura F. Dagley
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Victoria Australia
| | - Andrew Emili
- Banting and Best Department of Medical Research; Terrence Donnelly Centre for Cellular and Biomolecular Research; University of Toronto; Toronto ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto ON Canada
| |
Collapse
|
49
|
Schlager B, Straessle A, Hafen E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC Biotechnol 2012; 12:95. [PMID: 23231964 PMCID: PMC3536628 DOI: 10.1186/1472-6750-12-95] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many proteins form insoluble protein aggregates, called "inclusion bodies", when overexpressed in E. coli. This is the biggest obstacle in biotechnology. Ever since the reversible denaturation of proteins by chaotropic agents such as urea or guanidinium hydrochloride had been shown, these compounds were predominantly used to dissolve inclusion bodies. Other denaturants exist but have received much less attention in protein purification. While the anionic, denaturing detergent sodiumdodecylsulphate (SDS) is used extensively in analytical SDS-PAGE, it has rarely been used in preparative purification. RESULTS Here we present a simple and versatile method to purify insoluble, hexahistidine-tagged proteins under denaturing conditions. It is based on dissolution of overexpressing bacterial cells in a buffer containing sodiumdodecylsulfate (SDS) and whole-lysate denaturation of proteins. The excess of detergent is removed by cooling and centrifugation prior to affinity purification. Host- and overexpressed proteins do not co-precipitate with SDS and the residual concentration of detergent is compatible with affinity purification on Ni/NTA resin. We show that SDS can be replaced with another ionic detergent, Sarkosyl, during purification. Key advantages over denaturing purification in urea or guanidinium are speed, ease of use, low cost of denaturant and the compatibility of buffers with automated FPLC. CONCLUSION Ionic, denaturing detergents are useful in breaking the solubility barrier, a major obstacle in biotechnology. The method we present yields detergent-denatured protein. Methods to refold proteins from a detergent denatured state are known and therefore we propose that the procedure presented herein will be of general application in biotechnology.
Collapse
Affiliation(s)
- Benjamin Schlager
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| | - Anna Straessle
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| | - Ernst Hafen
- Institute for Molecular Systems Biology, ETH Zurich, Wolfgang Pauli-Strasse 16, Zurich, 8093, Switzerland
| |
Collapse
|
50
|
Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 2012; 9:1212-7. [DOI: 10.1038/nmeth.2248] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/10/2012] [Indexed: 11/08/2022]
|