1
|
Asano T, Sasse P, Nakata T. Development of a Cre-recombination-based color-switching reporter system for cell fusion detection. Biochem Biophys Res Commun 2024; 690:149231. [PMID: 38000293 DOI: 10.1016/j.bbrc.2023.149231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Cell fusion plays a key role in the development and formation of tissues and organs in several organisms. Skeletal myogenesis is assessed in vitro by cell shape and gene and protein expression using immunofluorescence and immunoblotting assays. However, these conventional methods are complex and do not allow for easy time-course observation in living cells. Therefore, this study aimed to develop a Cre recombination-based fluorescent reporter system to monitor cell-cell fusion. We combined green and red fluorescent proteins with a Cre-loxP system to detect syncytium formation using a fluorescent binary switch. This allowed us to visualize mononucleated cells with green fluorescence before fusion and multinucleated syncytia with red fluorescence by conditional expression after cell fusion. The formation of multinuclear myotubes during myogenic differentiation was detected by the change in fluorescence from green to red after Cre-mediated recombination. The distribution of the fluorescence signal correlated with the expression of myogenic differentiation markers. Moreover, red reporter fluorescence intensity was correlated with the number of nuclei contained in the red fluorescent-positive myotubes. We also successfully demonstrated that our fusion monitoring system is applicable to the formation of skeletal muscle myotube and placental syncytiotrophoblast. These results suggest that the color-switching fluorescent reporter system, using Cre-mediated recombination, could be a robust tool used to facilitate the study of cell-to-cell fusion.
Collapse
Affiliation(s)
- Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; The Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
2
|
Li B, Yu F, Wu F, Wang K, Lou F, Zhang D, Liao X, Yin B, Wang C, Ye L. Visual Osteoclast Fusion via A Fluorescence Method. Sci Rep 2018; 8:10184. [PMID: 29977065 PMCID: PMC6033910 DOI: 10.1038/s41598-018-28205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoclasts are multinucleated giant cells. Fusion is an essential element in the formation of osteoclasts. However, the exact cellular events and mechanisms remain largely unknown because of limited and insufficient methods for observing fusion process. In this work, a fluorescence reporter strategy was established to monitor osteoclast fusion. After fusing with cells expressing Cre recombinase, those cells with double fluorescence switch its expression from red to green fluorescent protein. The effect of RANKL and PTH on osteoclast fusion were both quantitatively and visually detected utilizing this strategy. Furthermore, a combination of this strategy with a technique of fluorescence-activated cell sorting revealed two different populations of fused osteoclasts, tdTomato+ GFP+ cells (TG cells) and GFP+ cells (G cells). The results argue for the potential of combining this technique with other bio-technologies to gain more information about osteoclast fusion. Overall, these data demonstrated that this visual fluorescence switch strategy is useful for further analysis of osteoclast fusion mechanisms.
Collapse
Affiliation(s)
- Boer Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, 75246, TX, USA
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|