1
|
Hardebeck S, Jácobo Goebbels N, Michalski C, Schreiber S, Jose J. Identification of a potent PCNA-p15-interaction inhibitor by autodisplay-based peptide library screening. Microb Biotechnol 2024; 17:e14471. [PMID: 38646975 PMCID: PMC11033925 DOI: 10.1111/1751-7915.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential factor for DNA metabolism. The influence of PCNA on DNA replication and repair, combined with the high expression rate of PCNA in various tumours renders PCNA a promising target for cancer therapy. In this context, an autodisplay-based screening method was developed to identify peptidic PCNA interaction inhibitors. A 12-mer randomized peptide library consisting of 2.54 × 106 colony-forming units was constructed and displayed at the surface of Escherichia coli BL21 (DE3) cells by autodisplay. Cells exhibiting an enhanced binding to fluorescent mScarlet-I-PCNA were enriched in four sorting rounds by flow cytometry. This led to the discovery of five peptide variants with affinity to mScarlet-I-PCNA. Among these, P3 (TCPLRWITHDHP) exhibited the highest binding signal. Subsequent flow cytometric analysis revealed a dissociation constant of 0.62 μM for PCNA-P3 interaction. Furthermore, the inhibition of PCNA interactions was investigated using p15, a PIP-box containing protein involved in DNA replication and repair. P3 inhibited the PCNA-p1551-70 interaction with a half maximal inhibitory activity of 16.2 μM, characterizing P3 as a potent inhibitor of the PCNA-p15 interaction.
Collapse
Affiliation(s)
- Sarah Hardebeck
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | | | - Caroline Michalski
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Sebastian Schreiber
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| | - Joachim Jose
- University of MünsterInstitute of Pharmaceutical and Medicinal ChemistryMünsterGermany
| |
Collapse
|
2
|
Case M, Navaratna T, Vinh J, Thurber G. Rapid Evaluation of Staple Placement in Stabilized α Helices Using Bacterial Surface Display. ACS Chem Biol 2023; 18:905-914. [PMID: 37039514 PMCID: PMC10773984 DOI: 10.1021/acschembio.3c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
There are a wealth of proteins involved in disease that cannot be targeted by current therapeutics because they are inside cells, inaccessible to most macromolecules, and lack small-molecule binding pockets. Stapled peptides, where two amino acids are covalently linked, form a class of macrocycles that have the potential to penetrate cell membranes and disrupt intracellular protein-protein interactions. However, their discovery relies on solid-phase synthesis, greatly limiting queries into their complex design space involving amino acid sequence, staple location, and staple chemistry. Here, we use stabilized peptide engineering by Escherichia coli display (SPEED), which utilizes noncanonical amino acids and click chemistry for stabilization, to rapidly screen staple location and linker structure to accelerate peptide design. After using SPEED to confirm hotspots in the mdm2-p53 interaction, we evaluated different staple locations and staple chemistry to identify several novel nanomolar and sub-nanomolar antagonists. Next, we evaluated SPEED in the B cell lymphoma 2 (Bcl-2) protein family, which is responsible for regulating apoptosis. We report that novel staple locations modified in the context of BIM, a high affinity but nonspecific naturally occurring peptide, improve its specificity against the highly homologous proteins in the Bcl-2 family. These compounds demonstrate the importance of screening linker location and chemistry in identifying high affinity and specific peptide antagonists. Therefore, SPEED can be used as a versatile platform to evaluate multiple design criteria for stabilized peptide engineering.
Collapse
|
3
|
Vitelli M, Budman H, Pritzker M, Tamer M. Applications of flow cytometry sorting in the pharmaceutical industry: A review. Biotechnol Prog 2021; 37:e3146. [PMID: 33749147 DOI: 10.1002/btpr.3146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.
Collapse
Affiliation(s)
- Michael Vitelli
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Hector Budman
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Mark Pritzker
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Melih Tamer
- Department of Manufacturing Technology, Sanofi Pasteur, Toronto, Canada
| |
Collapse
|
4
|
Navaratna T, Atangcho L, Mahajan M, Subramanian V, Case M, Min A, Tresnak D, Thurber GM. Directed Evolution Using Stabilized Bacterial Peptide Display. J Am Chem Soc 2020; 142:1882-1894. [PMID: 31880439 DOI: 10.1021/jacs.9b10716] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemically stabilized peptides have attracted intense interest by academics and pharmaceutical companies due to their potential to hit currently "undruggable" targets. However, engineering an optimal sequence, stabilizing linker location, and physicochemical properties is a slow and arduous process. By pairing non-natural amino acid incorporation and cell surface click chemistry in bacteria with high-throughput sorting, we developed a method to quantitatively select high affinity ligands and applied the Stabilized Peptide Evolution by E. coli Display technique to develop disrupters of the therapeutically relevant MDM2-p53 interface. Through in situ stabilization on the bacterial surface, we demonstrate rapid isolation of stabilized peptides with improved affinity and novel structures. Several peptides evolved a second loop including one sequence (Kd = 1.8 nM) containing an i, i+4 disulfide bond. NMR structural determination indicated a bent helix in solution and bound to MDM2. The bicyclic peptide had improved protease stability, and we demonstrated that protease resistance could be measured both on the bacterial surface and in solution, enabling the method to test and/or screen for additional drug-like properties critical for biologically active compounds.
Collapse
Affiliation(s)
- Tejas Navaratna
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Lydia Atangcho
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Mukesh Mahajan
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | | | - Marshall Case
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Andrew Min
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Daniel Tresnak
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Greg M Thurber
- Department of Chemical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Biomedical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
5
|
Ramesh B, Abnouf S, Mali S, Moree WJ, Patil U, Bark SJ, Varadarajan N. Engineered ChymotrypsiN for Mass Spectrometry-Based Detection of Protein Glycosylation. ACS Chem Biol 2019; 14:2616-2628. [PMID: 31710461 DOI: 10.1021/acschembio.9b00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have engineered the substrate specificity of chymotrypsin to cleave after Asn by high-throughput screening of large libraries created by comprehensive remodeling of the substrate binding pocket. The engineered variant (chymotrypsiN, ChyB-Asn) demonstrated an altered substrate specificity with an expanded preference for Asn-containing substrates. We confirmed that protein engineering did not compromise the stability of the enzyme by biophysical characterization. Comparison of wild-type ChyB and ChyB-Asn in profiling lysates of HEK293 cells demonstrated both qualitative and quantitative differences in the nature of the peptides and proteins identified by liquid chromatography and tandem mass spectrometry. ChyB-Asn enabled the identification of partially glycosylated Asn sites within a model glycoprotein and in the extracellular proteome of Jurkat T cells. ChymotrypsiN is a valuable addition to the toolkit of proteases to aid the mapping of N-linked glycosylation sites within proteins and proteomes.
Collapse
Affiliation(s)
- Balakrishnan Ramesh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Shaza Abnouf
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Sujina Mali
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Wilna J. Moree
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Steven J. Bark
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004, United States
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
6
|
Frei CS, Qian S, Cirino PC. New engineered phenolic biosensors based on the AraC regulatory protein. Protein Eng Des Sel 2018; 31:213-220. [DOI: 10.1093/protein/gzy024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/24/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- C S Frei
- Department of Chemical and Biomolecular Engineering, Biocatalysis Laboratory, University of Houston, S337 Engineering Building I, Houston, TX, USA
| | - S Qian
- Department of Chemical and Biomolecular Engineering, Biocatalysis Laboratory, University of Houston, S337 Engineering Building I, Houston, TX, USA
| | - P C Cirino
- Department of Chemical and Biomolecular Engineering, Biocatalysis Laboratory, University of Houston, S337 Engineering Building I, Houston, TX, USA
| |
Collapse
|
7
|
Frei CS, Wang Z, Qian S, Deutsch S, Sutter M, Cirino PC. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone. Protein Sci 2016; 25:804-14. [PMID: 26749125 DOI: 10.1002/pro.2873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l-arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named "AraC-TAL1") was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand-binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence-activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL-responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X-ray diffraction was used to solve the crystal structure of the apo AraC-TAL1 ligand-binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild-type AraC ligand-binding domain (root-mean-square deviation 0.93 Å), suggesting that AraC-TAL1 behaves similar to wild-type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence-function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC.
Collapse
Affiliation(s)
- Christopher S Frei
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204
| | - Zhiqing Wang
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204
| | - Shuai Qian
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204
| | - Samuel Deutsch
- Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California, 94598
| | - Markus Sutter
- Joint Genome Institute, 2800 Mitchell Drive Walnut Creek, California, 94598
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, 77204
| |
Collapse
|