1
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
2
|
Lothert K, Bagrin E, Wolff MW. Evaluating Novel Quantification Methods for Infectious Baculoviruses. Viruses 2023; 15:v15040998. [PMID: 37112978 PMCID: PMC10141099 DOI: 10.3390/v15040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Accurate and rapid quantification of (infectious) virus titers is of paramount importance in the manufacture of viral vectors and vaccines. Reliable quantification data allow efficient process development at a laboratory scale and thorough process monitoring in later production. However, current gold standard applications, such as endpoint dilution assays, are cumbersome and do not provide true process analytical monitoring. Accordingly, flow cytometry and quantitative polymerase chain reaction have attracted increasing interest in recent years, offering various advantages for rapid quantification. Here, we compared different approaches for the assessment of infectious viruses, using a model baculovirus. Firstly, infectivity was estimated by the quantification of viral nucleic acids in infected cells, and secondly, different flow cytometric approaches were investigated regarding analysis times and calibration ranges. The flow cytometry technique included a quantification based on post-infection fluorophore expression and labeling of a viral surface protein using fluorescent antibodies. Additionally, the possibility of viral (m)RNA labeling in infected cells was investigated as a proof of concept. The results confirmed that infectivity assessment based on qPCR is not trivial and requires sophisticated method optimization, whereas staining of viral surface proteins is a fast and feasible approach for enveloped viruses. Finally, labeling of viral (m)RNA in infected cells appears to be a promising opportunity but will require further research.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| | - Elena Bagrin
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
3
|
Tahk MJ, Laasfeld T, Meriste E, Brea J, Loza MI, Majellaro M, Contino M, Sotelo E, Rinken A. Fluorescence based HTS-compatible ligand binding assays for dopamine D3 receptors in baculovirus preparations and live cells. Front Mol Biosci 2023; 10:1119157. [PMID: 37006609 PMCID: PMC10062709 DOI: 10.3389/fmolb.2023.1119157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine receptors are G-protein-coupled receptors that are connected to severe neurological disorders. The development of new ligands targeting these receptors enables gaining a deeper insight into the receptor functioning, including binding mechanisms, kinetics and oligomerization. Novel fluorescent probes allow the development of more efficient, cheaper, reliable and scalable high-throughput screening systems, which speeds up the drug development process. In this study, we used a novel Cy3B labelled commercially available fluorescent ligand CELT-419 for developing dopamine D3 receptor-ligand binding assays with fluorescence polarization and quantitative live cell epifluorescence microscopy. The fluorescence anisotropy assay using 384-well plates achieved Z’ value of 0.71, which is suitable for high-throughput screening of ligand binding. The assay can also be used to determine the kinetics of both the fluorescent ligand as well as some reference unlabeled ligands. Furthermore, CELT-419 was also used with live HEK293-D3R cells in epifluorescence microscopy imaging for deep-learning-based ligand binding quantification. This makes CELT-419 quite a universal fluorescence probe which has the potential to be also used in more advanced microscopy techniques resulting in more comparable studies.
Collapse
Affiliation(s)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Elo Meriste
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jose Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
- Celtarys Research S.L., Santiago, Spain
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- *Correspondence: Ago Rinken,
| |
Collapse
|
4
|
Tahk MJ, Torp J, Ali MAS, Fishman D, Parts L, Grätz L, Müller C, Keller M, Veiksina S, Laasfeld T, Rinken A. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses-which way to go with measuring ligand binding to M 4 muscarinic receptors? Open Biol 2022; 12:220019. [PMID: 35674179 PMCID: PMC9175271 DOI: 10.1098/rsob.220019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023] Open
Abstract
M4 muscarinic acetylcholine receptor is a G protein-coupled receptor (GPCR) that has been associated with alcohol and cocaine abuse, Alzheimer's disease, and schizophrenia which makes it an interesting drug target. For many GPCRs, the high-affinity fluorescence ligands have expanded the options for high-throughput screening of drug candidates and serve as useful tools in fundamental receptor research. Here, we explored two TAMRA-labelled fluorescence ligands, UR-MK342 and UR-CG072, for development of assays for studying ligand-binding properties to M4 receptor. Using budded baculovirus particles as M4 receptor preparation and fluorescence anisotropy method, we measured the affinities and binding kinetics of both fluorescence ligands. Using the fluorescence ligands as reporter probes, the binding affinities of unlabelled ligands could be determined. Based on these results, we took a step towards a more natural system and developed a method using live CHO-K1-hM4R cells and automated fluorescence microscopy suitable for the routine determination of unlabelled ligand affinities. For quantitative image analysis, we developed random forest and deep learning-based pipelines for cell segmentation. The pipelines were integrated into the user-friendly open-source Aparecium software. Both image analysis methods were suitable for measuring fluorescence ligand saturation binding and kinetics as well as for screening binding affinities of unlabelled ligands.
Collapse
Affiliation(s)
- Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Jane Torp
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Mohammed A. S. Ali
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Dmytro Fishman
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Leopold Parts
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Department of Computer Science, University of Tartu, Narva Street 20, 51009 Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
5
|
Kopanchuk S, Vavers E, Veiksina S, Ligi K, Zvejniece L, Dambrova M, Rinken A. Intracellular dynamics of the Sigma-1 receptor observed with super-resolution imaging microscopy. PLoS One 2022; 17:e0268563. [PMID: 35584184 PMCID: PMC9116656 DOI: 10.1371/journal.pone.0268563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 12/05/2022] Open
Abstract
Sigma-1 receptor (Sig1R) is an endoplasmic reticulum (ER)-related membrane protein, that forms heteromers with other cellular proteins. As the mechanism of action of this chaperone protein remains unclear, the aim of the present study was to detect and analyze the intracellular dynamics of Sig1R in live cells using super-resolution imaging microscopy. For that, the Sig1R-yellow fluorescent protein conjugate (Sig1R-YFP) together with fluorescent markers of cell organelles were transfected into human ovarian adenocarcinoma (SK-OV-3) cells with BacMam technology. Sig1R-YFP was found to be located mainly in the nuclear envelope and in both tubular and vesicular structures of the ER but was not detected in the plasma membrane, even after activation of Sig1R with agonists. The super-resolution radial fluctuations approach (SRRF) performed with a highly inclined and laminated optical sheet (HILO) fluorescence microscope indicated substantial overlap of Sig1R-YFP spots with KDEL-mRFP, slight overlap with pmKate2-mito and no overlap with the markers of endosomes, peroxisomes, lysosomes, or caveolae. Activation of Sig1R with (+)-pentazocine caused a time-dependent decrease in the overlap between Sig1R-YFP and KDEL-mRFP, indicating that the activation of Sig1R decreases its colocalization with the marker of vesicular ER and does not cause comprehensive translocations of Sig1R in cells.
Collapse
Affiliation(s)
| | - Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| | - Kadri Ligi
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Riga Stradins University, Riga, Latvia
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Tartu, Estonia
| |
Collapse
|
6
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Lavogina D, Laasfeld T, Tahk MJ, Kukk O, Allikalt A, Kopanchuk S, Rinken A. cAMP Biosensor Assay Using BacMam Expression System: Studying the Downstream Signaling of LH/hCG Receptor Activation. Methods Mol Biol 2021; 2268:179-192. [PMID: 34085269 DOI: 10.1007/978-1-0716-1221-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) serves as a second messenger for numerous G-protein-coupled receptors. Changes in cellular cAMP levels reflect the biological activity of various GPCR-specific agents, including protein hormones. cAMP biosensors based on detection of Förster-type resonance energy transfer (FRET) offer unique advantages including the ratiometric nature of measurement, adjustable affinity toward detected molecule, capability of monitoring kinetics of cAMP release, and compatibility with the multi-well format and fluorescence plate reader platforms. In this chapter, we introduce the optimized version of the previously reported method to achieve sufficient and reproducible level of cAMP biosensor protein expression with the means of BacMam transduction system. As a practical challenge, we address the applicability of the designed assay for screening of biological activity of human hormones, including human chorionic gonadotropin (hCG) bearing different posttranslational modifications.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- University of Tartu, Institute of Clinical Medicine, Clinic of Hematology and Oncology, Tartu, Estonia
- Competence Centre on Reproductive Medicine & Biology, Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Olga Kukk
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Competence Centre on Reproductive Medicine & Biology, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
8
|
Laasfeld T, Ehrminger R, Tahk MJ, Veiksina S, Kõlvart KR, Min M, Kopanchuk S, Rinken A. Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. NANOSCALE 2021; 13:2436-2447. [PMID: 33464268 DOI: 10.1039/d0nr06737g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studying mechanisms of receptor-ligand interactions has remained challenging due to several limitations of different measurement methods. Here we present a total internal reflection fluorescence microscopy-based method that maintains the right balance between retaining the receptors in the natural lipid environment, sufficient throughput for ligand screening, high sensitivity, and offering more detailed view into the ligand-binding process. The novel method combines G protein-coupled receptor display in budded baculovirus particles and the immobilization of the particles to a functionalized coverslip. We adapted and validated the functionalized coverslip preparation process to achieve selective immobilization of budded baculovirus particles. The selectivity of budded baculovirus immobilization was validated with budded baculovirus particles displaying either Frizzled 6 receptors labeled with mCherry or neuropeptide Y Y1 receptors. To scale the system for ligand binding assays, we developed both open-source multiwell systems and image analysis software SPOTNIC for flexible assay design. The neuropeptide Y Y1 receptor was used for further receptor-ligand binding studies with high-affinity TAMRA labeled fluorescent ligand UR-MC026. The affinities of the fluorescent ligand and four unlabeled ligands (BIBO3304, UR-MK299, PYY, pNPY) were obtained with the developed method and followed a similar trend with both the parallel measurements with fluorescence anisotropy method and the data published earlier. The novel method could be extended for various advanced assays utilizing multidimensional detection modes, integrating super-resolution methods for single molecule detection and microfluidic devices for kinetic measurements.
Collapse
Affiliation(s)
- Tõnis Laasfeld
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Robin Ehrminger
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia. and Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Maris-Johanna Tahk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Santa Veiksina
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Karl Rene Kõlvart
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Mart Min
- Tallinn University of Technology, Thomas Johann Seebeck Department of Electronics, Ehitajate Tee 5, 19086, Tallinn, Estonia
| | - Sergei Kopanchuk
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Ago Rinken
- University of Tartu, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
9
|
Veiksina S, Tahk MJ, Laasfeld T, Link R, Kopanchuk S, Rinken A. Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs: The Case of Cy3B-Labeled Ligands Binding to MC 4 Receptors in Budded Baculoviruses. Methods Mol Biol 2021; 2268:119-136. [PMID: 34085265 DOI: 10.1007/978-1-0716-1221-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the past decade, fluorescence methods have become valuable tools for characterizing ligand binding to G protein-coupled receptors (GPCRs). However, only a few of the assays enable studying wild-type receptors and monitor the ligand binding in real time. One of the approaches that is inherently suitable for this purpose is the fluorescence anisotropy (FA) assay. In the FA assay, the change of ligand's rotational freedom connected with its binding to the receptor can be monitored with a conventional fluorescence plate reader equipped with suitable optical filters. To achieve the high receptor concentration required for the assay and the low autofluorescence levels essential for reliable results, budded baculoviruses that display GPCRs on their surfaces can be used. The monitoring process generates a substantial amount of kinetic data, which is usually stored as a proprietary file format limiting the flexibility of data analysis. To solve this problem, we propose the use of the data curation software Aparecium ( http://gpcr.ut.ee/aparecium.html ), which integrates experimental data with metadata in a Minimum Information for Data Analysis in Systems Biology (MIDAS) format. Aparecium enables data export to different software packages for fitting to suitable kinetic or equilibrium models. A combination of the FA assay with the novel data analysis strategy is suitable for screening new active compounds, but also for modeling complex systems of ligand binding to GPCRs. We present the proposed approach using different fluorescent probes and assay types to characterize ligand binding to melanocortin 4 (MC4) receptor.
Collapse
Affiliation(s)
- Santa Veiksina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Reet Link
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
10
|
BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M 2 muscarinic acetylcholine receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118930. [PMID: 33347921 DOI: 10.1016/j.bbamcr.2020.118930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
BRET and fluorescence anisotropy (FA) are two fluorescence-based techniques used for the characterization of ligand binding to G protein-coupled receptors (GPCRs) and both allow monitoring of ligand binding in real time. In this study, we present the first direct comparison of BRET-based and FA-based binding assays using the human M2 muscarinic acetylcholine receptor (M2R) and two TAMRA (5-carboxytetramethylrhodamine)-labeled fluorescent ligands as a model system. The determined fluorescent ligand affinities from both assays were in good agreement with results obtained from radioligand competition binding experiments. The assays yielded real-time kinetic binding data revealing differences in the mechanism of binding for the investigated fluorescent probes. Furthermore, the investigation of various unlabeled M2R ligands yielded pharmacological profiles in accordance with earlier reported data. Taken together, this study showed that BRET- and FA-based binding assays represent valuable alternatives to radioactivity-based methods for screening purposes and for a precise characterization of binding kinetics supporting the exploration of binding mechanisms.
Collapse
|
11
|
Dielectric Spectroscopy to Improve the Production of rAAV Used in Gene Therapy. Processes (Basel) 2020. [DOI: 10.3390/pr8111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The insect cell-baculovirus expression vector system is an established method for large scale recombinant adeno-associated virus (rAAV) production, largely due to its scalability and high volumetric productivities. During rAAV production it is critical to monitor process parameters such as Spodoptera frugiperda (Sf9) cell concentration, infection timing, and cell harvest viabilities since they can have a significant influence on rAAV productivity and product quality. Herein we developed the use of dielectric spectroscopy as a process analytical technology (PAT) tool used to continuously monitor the production of rAAV in 2 L stirred tank bioreactors, achieving enhanced control over the production process. This study resulted in improved manufacturing robustness through continuous monitoring of cell culture parameters, eliminating sampling needs, increasing the accuracy of infection timing, and reliably estimating the time of harvest. To increase the accuracy of baculovirus infection timing, the cell growth/permittivity model was coupled to a feedback loop with real-time monitoring. This system was able to predict baculovirus infection timing up to 24 h in advance for greatly improved accuracy of infection and ensuring consistent high rAAV productivities. Furthermore, predictive models were developed based on the dielectric measurements of the culture. These multiple linear regression-based models resulted in correlation coefficients (Q2) of 0.89 for viable cell concentration, 0.97 for viability, and 0.92 for cell diameter. Finally, models were developed to predict rAAV titer providing the capability to distinguish in real time between high and low titer production batches.
Collapse
|
12
|
Allikalt A, Laasfeld T, Ilisson M, Kopanchuk S, Rinken A. Quantitative analysis of fluorescent ligand binding to dopamine D 3 receptors using live-cell microscopy. FEBS J 2020; 288:1514-1532. [PMID: 32783364 DOI: 10.1111/febs.15519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Abstract
Dopamine receptors are G protein-coupled receptors that have several essential functions in the central nervous system. A better understanding of the regulatory mechanisms of ligand binding to the receptor may open new possibilities to affect the downstream signal transduction pathways. The majority of the available ligand binding assays use either membrane preparations, cell suspensions, or genetically modified receptors, which may give at least partially incorrect understanding of ligand binding. In this study, we implemented an assay combining fluorescence and bright-field microscopy to measure ligand binding to dopamine D3 receptors in live mammalian cells. For membrane fluorescence intensity quantification from microscopy images, we developed a machine learning-based user-friendly software membrane tools and incorporated it into a data management software aparecium that has been previously developed in our workgroup. For the experiments, a fluorescent ligand NAPS-Cy3B was synthesized by conjugating a dopaminergic antagonist N-(p-aminophenethyl)spiperone with a fluorophore Cy3B. The subnanomolar affinity of NAPS-Cy3B makes it a suitable ligand for the characterization of D3 receptors in live HEK293 cells. Using a microplate compatible automated widefield fluorescence microscope, together with the membrane tools software, enables the detection and quantification of ligand binding with a high-throughput. The live cell assay is suitable for the characterization of fluorescent ligand binding and also in the competition experiments for the screening of novel unlabeled dopaminergic ligands. We propose that this simple yet more native-like approach is feasible in GPCR research, as it enables the detection of ligand binding in an environment containing more components involved in the signal transduction cascade.
Collapse
Affiliation(s)
- Anni Allikalt
- Institute of Chemistry, University of Tartu, Estonia.,Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | | | | | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Estonia
| |
Collapse
|
13
|
Holographic Imaging of Insect Cell Cultures: Online Non-Invasive Monitoring of Adeno-Associated Virus Production and Cell Concentration. Processes (Basel) 2020. [DOI: 10.3390/pr8040487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The insect cell-baculovirus vector system has become one of the favorite platforms for the expression of viral vectors for vaccination and gene therapy purposes. As it is a lytic system, it is essential to balance maximum recombinant product expression with harvest time, minimizing product exposure to detrimental proteases. With this purpose, new bioprocess monitoring solutions are needed to accurately estimate culture progression. Herein, we used online digital holographic microscopy (DHM) to monitor bioreactor cultures of Sf9 insect cells. Batches of baculovirus-infected Sf9 cells producing recombinant adeno-associated virus (AAV) and non-infected cells were used to evaluate DHM prediction capabilities for viable cell concentration, culture viability and AAV titer. Over 30 cell-related optical attributes were quantified using DHM, followed by a forward stepwise regression to select the most significant (p < 0.05) parameters for each variable. We then applied multiple linear regression to obtain models which were able to predict culture variables with root mean squared errors (RMSE) of 7 × 105 cells/mL, 3% for cell viability and 2 × 103 AAV/cell for 3-fold cross-validation. Overall, this work shows that DHM can be implemented for online monitoring of Sf9 concentration and viability, also permitting to monitor product titer, namely AAV, or culture progression in lytic systems, making it a valuable tool to support the time of harvest decision and for the establishment of controlled feeding strategies.
Collapse
|
14
|
Link R, Veiksina S, Tahk MJ, Laasfeld T, Paiste P, Kopanchuk S, Rinken A. The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J Neurochem 2019; 153:346-361. [PMID: 31792980 DOI: 10.1111/jnc.14933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/06/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Reet Link
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Santa Veiksina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, Tartu, Estonia
| | | | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
15
|
Allikalt A, Kopanchuk S, Rinken A. Implementation of fluorescence anisotropy-based assay for the characterization of ligand binding to dopamine D1 receptors. Eur J Pharmacol 2018; 839:40-46. [DOI: 10.1016/j.ejphar.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023]
|
16
|
Assays with Detection of Fluorescence Anisotropy: Challenges and Possibilities for Characterizing Ligand Binding to GPCRs. Trends Pharmacol Sci 2018; 39:187-199. [DOI: 10.1016/j.tips.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
|