1
|
Fadahunsi AI, Kumm C, Graham K, de León AAP, Guerrero F, Sparagano OAE, Finn RD. Biochemical characterisation of Cytochrome P450 oxidoreductase from the cattle tick, Rhipicephalus microplus, highlights potential new acaricide target. Ticks Tick Borne Dis 2023; 14:102148. [PMID: 36905815 DOI: 10.1016/j.ttbdis.2023.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Management of the cattle tick, Rhipicephalus microplus, presents a challenge because some populations of this cosmopolitan and economically important ectoparasite are resistant to multiple classes of acaricides. Cytochrome P450 oxidoreductase (CPR) is part of the cytochrome P450 (CYP450) monooxygenases that are involved in metabolic resistance by their ability to detoxify acaricides. Inhibiting CPR, the sole redox partner that transfers electrons to CYP450s, could overcome this type of metabolic resistance. This report represents the biochemical characterisation of a CPR from ticks. Recombinant CPR of R. microplus (RmCPR), minus its N-terminal transmembrane domain, was produced in a bacterial expression system and subjected to biochemical analyses. RmCPR displayed a characteristic dual flavin oxidoreductase spectrum. Incubation with nicotinamide adenine dinucleotide phosphate (NADPH) lead to an increase in absorbance between 500 and 600 nm with a corresponding appearance of a peak absorbance at 340-350 nm indicating functional transfer of electrons between NADPH and the bound flavin cofactors. Using the pseudoredox partner, kinetic parameters for both cytochrome c and NADPH binding were calculated as 26.6 ± 11.4 µM and 7.03 ± 1.8 µM, respectively. The turnover, Kcat, for RmCPR for cytochrome c was calculated as 0.08 s-1 which is significantly lower than the CPR homologues of other species. IC50 (Half maximal Inhibitory Concentration) values obtained for the adenosine analogues 2', 5' ADP, 2'- AMP, NADP+and the reductase inhibitor diphenyliodonium were: 140, 82.2, 24.5, and 75.3 µM, respectively. Biochemically, RmCPR resembles CPRs of hematophagous arthropods more so than mammalian CPRs. These findings highlight the potential of RmCPR as a target for the rational design of safer and potent acaricides against R. microplus.
Collapse
Affiliation(s)
- Adeyinka I Fadahunsi
- Department of Biological Sciences, Biotechnology Programme, Elizade University, Ondo State, Nigeria
| | - Christopher Kumm
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Kirsty Graham
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Felix Guerrero
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, U.S. Department of Agriculture, Agricultural Research Service, Kerrville, TX, USA
| | - Oliver A E Sparagano
- Department of Public Health and Infectious Diseases, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Robert D Finn
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne NE1 8ST, UK; Department of Biochemistry & Genetics, Faculty of Health & Life Sciences, St George's International School of Medicine, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
2
|
Yu X, Sun J, Wang W, Jiang L, Wang R, Xiao W, Cheng B, Fan J. Tobacco etch virus protease mediating cleavage of the cellulose-binding module tagged colored proteins immobilized on the regenerated amorphous cellulose. Bioprocess Biosyst Eng 2017; 40:1101-1110. [DOI: 10.1007/s00449-017-1772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
|
3
|
Dormeshkin D, Gilep A, Sergeev G, Usanov S. Development of CYB5-fusion monitoring system for efficient periplasmic expression of multimeric proteins in Escherichia coli. Protein Expr Purif 2016; 128:60-6. [DOI: 10.1016/j.pep.2016.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 11/15/2022]
|
4
|
Abstract
Protein affinity purification techniques are widely used for isolating pure target proteins for biochemical and structural characterization. Herein, we describe the protocol for affinity-based purification of proteins expressed in Escherichia coli that uses the coordination of a peptide tag covalently modified with heme c, known as a heme-tag, to an L-histidine immobilized Sepharose resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. In addition, we describe methods for specifically detecting heme-tagged proteins in SDS-PAGE gels using a heme-staining procedure and for quantifying the proteins using a pyridine hemochrome assay.
Collapse
|
5
|
Miladi B, Dridi C, El Marjou A, Boeuf G, Bouallagui H, Dufour F, Di Martino P, Elm'selmi A. An improved strategy for easy process monitoring and advanced purification of recombinant proteins. Mol Biotechnol 2014; 55:227-35. [PMID: 23780701 DOI: 10.1007/s12033-013-9673-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this work, a multifunctional expression cassette, termed Multitags, combining different and complementary functionalities, was designed and used to monitor the expression and the purification of two model proteins (Pfu DNA polymerase and Myosin-VIIa- and Rab-Interracting protein : MyRIP). Multitags contains two affinity purification tags, a polyhistidine sequence (10× His) and the streptavidin-binding peptide (SBP) and as a marker tag the heme-binding domain of rat cytochrome b5 followed by the TEV cleavage site. Using the Multitags as fusion partner, more than 90 % of both fusion proteins were produced in soluble form when expressed in Escherichia coli KRX. In addition, high purity (99 %) of recombinant proteins was achieved after two consecutive affinity purification steps. The expression cassette also demonstrated an accurate monitoring capability comparable to that of a dual recognition-based method. The choice of the SBP tag was considered as an integral process that included a method for tag removal. Thus, an immobilized TEV protease fixed on streptavidin-agarose matrix was used for the cleavage of fusion proteins. After digestion, both unprocessed fusion proteins and Multitags were retained on the proteolytic column via their SBP sequence, allowing cleavage and recovery of target proteins on one step. This combined approach may accelerate the development of optimized production processes, while insuring high product quality and a low production cost.
Collapse
Affiliation(s)
- Baligh Miladi
- Laboratoire de Biologie Moléculaire, Ecole de Biologie Industrielle, 32 Boulevard du port, 95094, Cergy-Pontoise cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hänel K, Möckel L, Brummel M, Peiris K, Hartmann R, Dingley AJ, Willbold D, Loidl-Stahlhofen A. Expression and purification of soluble HIV-2 viral protein R (Vpr) using a sandwich-fusion protein strategy. Protein Expr Purif 2013; 95:156-61. [PMID: 24380802 DOI: 10.1016/j.pep.2013.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/16/2022]
Abstract
Viral accessory proteins of the human immunodeficiency virus (HIV), including virus protein R (Vpr), are crucial for the efficient replication of the virus in the host organism. While functional data are available for HIV-1 Vpr, there is a paucity of data describing the function and structure of HIV-2 Vpr. In this report, the construction of a His6-MBP-intein1-Vpr-intein2-Cyt b5-His6 fusion protein is presented. Unlike previous research efforts where only microgram quantities of HIV-1 Vpr could be produced, this construct enabled soluble milligram yields via an Escherichia coli over-expression system. Straightforward protein purification of HIV-2 Vpr was achieved by standard chromatography routines and autocatalytic intein cleavage. Preliminary structural studies by circular dichroism (CD) and NMR spectroscopy revealed that the protein is stable in the presence of micellar concentrations of the detergent DPC and adopts an α-helix secondary structure.
Collapse
Affiliation(s)
- Karen Hänel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Luis Möckel
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Monika Brummel
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Katja Peiris
- Westfälische Hochschule, Molekulare Biologie, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Rudolf Hartmann
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Andrew J Dingley
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, Institute of Complex Systems (ICS-6), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
7
|
Hsu MF, Yu TF, Chou CC, Fu HY, Yang CS, Wang AHJ. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 2013; 8:e56363. [PMID: 23457558 PMCID: PMC3574148 DOI: 10.1371/journal.pone.0056363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 01/12/2023] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.
Collapse
Affiliation(s)
- Min-Feng Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Tsung-Fu Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| | - Andrew H. J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail: (CSY); (AHJW)
| |
Collapse
|
8
|
Asher WB, Bren KL. A heme fusion tag for protein affinity purification and quantification. Protein Sci 2010; 19:1830-9. [PMID: 20665691 PMCID: PMC2998719 DOI: 10.1002/pro.460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
Abstract
We report a novel affinity-based purification method for proteins expressed in Escherichia coli that uses the coordination of a heme tag to an L-histidine-immobilized sepharose (HIS) resin. This approach provides an affinity purification tag visible to the eye, facilitating tracking of the protein. We show that azurin and maltose binding protein are readily purified from cell lysate using the heme tag and HIS resin. Mild conditions are used; heme-tagged proteins are bound to the HIS resin in phosphate buffer, pH 7.0, and eluted by adding 200-500 mM imidazole or binding buffer at pH 5 or 8. The HIS resin exhibits a low level of nonspecific binding of untagged cellular proteins for the systems studied here. An additional advantage of the heme tag-HIS method for purification is that the heme tag can be used for protein quantification by using the pyridine hemochrome absorbance method for heme concentration determination.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of RochesterRochester, New York 14627-0216
| |
Collapse
|
9
|
Tokunaga H, Arakawa T, Tokunaga M. Novel soluble expression technologies derived from unique properties of halophilic proteins. Appl Microbiol Biotechnol 2010; 88:1223-31. [DOI: 10.1007/s00253-010-2832-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/07/2010] [Accepted: 08/08/2010] [Indexed: 11/29/2022]
|
10
|
Computer-aided design to select optimal polypeptide tags to assist the purification of recombinant proteins. Sep Purif Technol 2009. [DOI: 10.1016/j.seppur.2008.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 2005; 48:1-13. [PMID: 16427311 DOI: 10.1016/j.pep.2005.12.002] [Citation(s) in RCA: 449] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 11/22/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Affinity tags are highly efficient tools for protein purification. They allow the purification of virtually any protein without any prior knowledge of its biochemical properties. The use of affinity tags has therefore become widespread in several areas of research e.g., high throughput expression studies aimed at finding a biological function to large numbers of yet uncharacterized proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected application of the protein, like for clinical use. Therefore, an increasing number of approaches are available at present that are designed for the removal of the affinity tag from the recombinant protein. Most of these methods employ recombinant endoproteases that recognize a specific sequence. These process enzymes can subsequently be removed from the process by affinity purification, since they also include a tag. Here, a survey of the most common affinity tags and the current methods for tag removal is presented, with special emphasis on the removal of N-terminal histidine tags using TAGZyme, a system based on exopeptidase cleavage. In the quest to reduce the significant costs associated with protein purification at large scale, relevant aspects involved in the development of downstream processes for pharmaceutical protein production that incorporate a tag removal step are also discussed. A comparison of the yield of standard vs. affinity purification together with an example of tag removal using TAGZyme is also included.
Collapse
Affiliation(s)
- José Arnau
- Unizyme Laboratories A/S, Dr. Neergaards vej 17, DK-2970 Hørsholm, Denmark.
| | | | | | | |
Collapse
|