1
|
Chepelev N, Chepelev L, Alamgir M, Golshani A. Large-Scale Protein-Protein Interaction Detection Approaches: Past, Present and Future. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
2
|
Chan LS, Wells RA. Manipulation of reciprocal salt bridges at the heterodimerization interface alters the dimerization properties of mouse RXRalpha and PPARgamma1. Biochem Biophys Res Commun 2007; 358:1080-5. [PMID: 17521607 DOI: 10.1016/j.bbrc.2007.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Heterodimerization with RXR is essential for the high-affinity specific binding of multiple nuclear receptors to their cognate DNA sequences. NR dimerization is a two-step process, initiated in solution by interaction between amino acid residues with helices 9 and 10 of the ligand binding domains of RXR and its NR partners. Studies of the orphan nuclear receptor HNF4alpha, which forms homodimers exclusively, have indicated that two charged residues in this region, HNF4alpha(K300) and HNF4alpha(E327), are key mediators of dimerization. We have analyzed the contribution of the homologous residues in RXRalpha (RXRalpha(E395), RXRalpha(K422)) and PPARgamma (PPARgamma(E405), PPARgamma(K432)) to the formation of the RXRalpha-PPARgamma heterodimer. Charge reversal mutants of RXRalpha (RXRalpha(E395K), RXRalpha(K422E)) and PPARgamma (PPARgamma(E405K), PPARgamma(K432E)) show impaired ability to form heterodimers with wild-type PPARgamma and RXRalpha, respectively. However, pairs of mutants with balanced charge changes, i.e., RXRalpha(E395K) with PPARgamma(K432E) and RXRalpha(K422E) with PPARgamma(E405K), are able to form dimers. Ligand response is preserved in the PPARgamma mutants, indicating the mutation does not result in major structural derangement of the protein. These results establish the importance of salt bridges between these residues in the heterodimerization of nuclear receptors, and offer a technical approach to generating functional NR mutants with directed heterodimerization specificity. Such mutants will be valuable tools in the genetic analysis of NR function.
Collapse
Affiliation(s)
- Lap Shu Chan
- Molecular and Cellular Biology, Sunnybrook Research Institute, 2075 Bayview Avenue, T2-058 Toronto, Ont., Canada M4N 2M5
| | | |
Collapse
|
3
|
Wolf SS, Patchev VK, Obendorf M. A novel variant of the putative demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem Biophys 2007; 460:56-66. [PMID: 17353003 DOI: 10.1016/j.abb.2007.01.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/10/2007] [Accepted: 01/16/2007] [Indexed: 11/30/2022]
Abstract
Evidence is accumulating in support of the view that tissue-specific effects of steroid hormones depend on the recruitment of nuclear receptor comodulator proteins. The latter interact directly with the hormone receptors and modify their transcriptional effects on specific target genes. The mechanisms of comodulator influence on nuclear receptor-controlled gene transcription is only partially understood. Here, we describe the discovery of a new AR coactivator which belongs to the JmjC containing enzyme family as a novel variant of JMJD1C (jumonji domain-containing 1C). By using a fragment of the human AR (aa 325-919) as bait in a yeast two-hybrid screen, a region of the human JMJD1C gene was identified as interacting with AR. A novel splice variant s-JMJD1C was amplified by RACE, and the binding to AR was analysed by GST-pull-down and mammalian one-hybrid experiments. As a nuclear-localized protein, the s-JMJD1C gene is expressed in a variety of human tissues. In the brain, this protein is present in several, but not confined to, AR-expressing neuronal populations and its abundance varies with the hormonal status in a region-specific fashion. Interestingly, the expression of s-JMJD1C is reduced in breast cancer tumors and significantly higher in normal breast tissues indicating a putative role in tumor suppression. As s-JMJD1C has putative demethylase activity, removal of methylation seems to be important for nuclear receptor-based gene regulation.
Collapse
Affiliation(s)
- Siegmund S Wolf
- Gynecology and Andrology, MHCII, Schering AG/Jenapharm, Otto-Schott-Str 15, D-07745 Jena, Germany.
| | | | | |
Collapse
|
4
|
Petit MMR, Crombez KRMO, Vervenne HBVK, Weyns N, Van de Ven WJM. The tumor suppressor Scrib selectively interacts with specific members of the zyxin family of proteins. FEBS Lett 2005; 579:5061-8. [PMID: 16137684 DOI: 10.1016/j.febslet.2005.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 07/07/2005] [Accepted: 08/09/2005] [Indexed: 11/28/2022]
Abstract
The zyxin family of proteins consists of five members, ajuba, LIMD1, LPP, TRIP6 and zyxin, which localize at cell adhesion sites and shuttle to the nucleus. Previously, we established that LPP interacts with the tumor suppressor Scrib, a member of the leucine-rich repeat and PDZ (LAP) family of proteins. Here, we demonstrate that Scrib also interacts with TRIP6, but not with zyxin, ajuba, or LIMD1. We show that TRIP6 directly binds to the third PDZ domain of Scrib via its carboxy-terminus. Both proteins localize in cell-cell contacts but are not responsible to target each other to these structures. In the course of our experiments, we also characterized the nuclear export signal of human TRIP6, and show that LIMD1 is localized in focal adhesions. The binding between two of zyxin's family members and Scrib links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates these zyxin family members in Scrib-associated functions.
Collapse
Affiliation(s)
- Marleen M R Petit
- Laboratory for Molecular Oncology, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology VIB, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
5
|
The tumor suppressor Scrib interacts with the zyxin-related protein LPP, which shuttles between cell adhesion sites and the nucleus. BMC Cell Biol 2005; 6:1. [PMID: 15649318 PMCID: PMC546208 DOI: 10.1186/1471-2121-6-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 01/13/2005] [Indexed: 11/22/2022] Open
Abstract
Background At sites of cell adhesion, proteins exist that not only perform structural tasks but also have a signaling function. Previously, we found that the Lipoma Preferred Partner (LPP) protein is localized at sites of cell adhesion such as focal adhesions and cell-cell contacts, and shuttles to the nucleus where it has transcriptional activation capacity. LPP is a member of the zyxin family of proteins, which contains five members: ajuba, LIMD1, LPP, TRIP6 and zyxin. LPP has three LIM domains (zinc-finger protein interaction domains) at its carboxy-terminus, which are preceded by a proline-rich pre-LIM region containing a number of protein interaction domains. Results To catch the role of LPP at sites of cell adhesion, we made an effort to identify binding partners of LPP. We found the tumor suppressor protein Scrib, which is a component of cell-cell contacts, as interaction partner of LPP. Human Scrib, which is a functional homologue of Drosophila scribble, is a member of the leucine-rich repeat and PDZ (LAP) family of proteins that is involved in the regulation of cell adhesion, cell shape and polarity. In addition, Scrib displays tumor suppressor activity. The binding between Scrib and LPP is mediated by the PDZ domains of Scrib and the carboxy-terminus of LPP. Both proteins localize in cell-cell contacts. Whereas LPP is also localized in focal adhesions and in the nucleus, Scrib could not be detected at these locations in MDCKII and CV-1 cells. Furthermore, our investigations indicate that Scrib is dispensable for targeting LPP to focal adhesions and to cell-cell contacts, and that LPP is not necessary for localizing Scrib in cell-cell contacts. We show that all four PDZ domains of Scrib are dispensable for localizing this protein in cell-cell contacts. Conclusions Here, we identified an interaction between one of zyxin's family members, LPP, and the tumor suppressor protein Scrib. Both proteins localize in cell-cell contacts. This interaction links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates LPP in Scrib-associated functions.
Collapse
|
6
|
Christiaens V, Bevan CL, Callewaert L, Haelens A, Verrijdt G, Rombauts W, Claessens F. Characterization of the two coactivator-interacting surfaces of the androgen receptor and their relative role in transcriptional control. J Biol Chem 2002; 277:49230-7. [PMID: 12370175 DOI: 10.1074/jbc.m209322200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor interacts with the p160 coactivators via two surfaces, one in the ligand binding domain and one in the amino-terminal domain. The ligand binding domain interacts with the nuclear receptor signature motifs, whereas the amino-terminal domain has a high affinity for a specific glutamine-rich region in the p160s. We here describe the implication of two conserved motifs in the latter interaction. The amino-terminal domain of the androgen receptor is a very strong activation domain constituent of Tau5, which is mainly active in the absence of the ligand binding domain, and Tau1, which is only active in the presence of the ligand binding domain. Both domains are, however, implicated in the recruitment of the p160s. Mutation analysis of the p160s has shown that the relative contribution of the two recruitment mechanisms via the signature motifs or via the glutamine-rich region depend on the nature of the enhancers tested. We propose, therefore, that the androgen receptor-coactivator complex has several alternative conformations, depending partially on the context of the enhancer.
Collapse
Affiliation(s)
- Valerie Christiaens
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
7
|
Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999; 19:8383-92. [PMID: 10567563 PMCID: PMC84931 DOI: 10.1128/mcb.19.12.8383] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor is unusual among nuclear receptors in that most, if not all, of its activity is mediated via the constitutive activation function in the N terminus. Here we demonstrate that p160 coactivators such as SRC1 (steroid receptor coactivator 1) interact directly with the N terminus in a ligand-independent manner via a conserved glutamine-rich region between residues 1053 and 1123. Although SRC1 is capable of interacting with the ligand-binding domain by means of LXXLL motifs, this interaction is not essential since an SRC1 mutant with no functional LXXLL motifs retains its ability to potentiate androgen receptor activity. In contrast, mutants lacking the glutamine-rich region are inactive, indicating that this region is both necessary and sufficient for recruitment of SRC1 to the androgen receptor. This recruitment is in direct contrast to the recruitment of SRC1 to the estrogen receptor, which requires interaction with the ligand-binding domain.
Collapse
Affiliation(s)
- C L Bevan
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Vaishnav YN, Pant V. Differential regulation of E2F transcription factors by p53 tumor suppressor protein. DNA Cell Biol 1999; 18:911-22. [PMID: 10619603 DOI: 10.1089/104454999314773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cell cycle is under the control of various positive and negative regulators. Two such regulators are the E2F family of transcription factors and the p53 tumor suppressor protein. While E2F proteins are implicated in promoting the S phase of the cell cycle, p53 has the potential to arrest cells in G1 phase and thereby prevent entry into S phase. Because they perform seemingly opposite functions in the control of cell growth, a possibility of functional interactions between E2F and p53 was investigated. It was found that p53 specifically inhibited activated transcription by E2F-5 but not by E2F-1. Investigation into the mechanism of action established that heterodimer formation and the DNA-binding steps were not significantly inhibited by p53. However, the transcriptional activation step of E2F-5 activity, as examined by using a Gal4 DNA-binding domain chimera, was specifically inhibited by p53. Interestingly, p53 could also inhibit transcriptional activation by E2F-4 but not by E2F-2 or E2F-3. The results indicate that p53 differentially regulates the activities of two subclasses (E2F-1/-2/-3 vs. E2F-4/-5) of E2F transcription factors. Detailed analysis using a two-hybrid approach in mammalian cells indicated lack of physical interaction between p53 and E2F-5, DP-1, or E2F-1. Reciprocal analysis revealed that whereas E2F-1 dramatically inhibited p53-activated transcription, E2F-5 or DP-1 did not. Thus, nonreciprocal functional interactions exist between various members of the E2F family of transcription factors and p53 tumor suppressor protein. The complex interplay between various positive and negative regulators of cell growth, such as E2F and p53 proteins, may be crucial in determining the ultimate outcome in terms of cell cycle arrest, cell growth, or apoptosis.
Collapse
Affiliation(s)
- Y N Vaishnav
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | | |
Collapse
|
9
|
Lee ND, Chen J, Shpall RL, Naumovski L. Subcellular localization of interferon-inducible Myc/stat-interacting protein Nmi is regulated by a novel IFP 35 homologous domain. J Interferon Cytokine Res 1999; 19:1245-52. [PMID: 10574616 DOI: 10.1089/107999099312902] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nmi was initially identified through a yeast two-hybrid interaction with N-Myc but it also interacts with c-Myc, Max, Fos, and several other transcription factors, including signal transducer and activator of transcription (Stat) proteins. Nmi is an interferon (IFN)-inducible protein with 25% amino acid identity to the IFN-inducible protein IFP 35. We have found that this homology consists of a novel domain of approximately 90-92 amino acids (aa) that is repeated in tandem in each protein. This region, termed Nmi/IFP 35 domain (NID), is important for subcellular localization of Nmi. Full-length Nmi protein or deletion constructs containing a single NID are localized to the cytoplasm, but amino-terminal Nmi fragments of up to 92 aa containing neither NID are nuclear. Fusion of the amino-terminal end of Nmi to pyruvate kinase, an exclusively cytoplasmic protein, results in a cytoplasmic fusion protein, suggesting that the amino-terminal end of Nmi does not contain a classic nuclear localization signal (NLS). Fusion of the amino-terminal end of Nmi to green fluorescent protein (GFP), which is normally found in both nuclear and cytoplasmic compartments, does not alter GFP distribution, whereas fusion of a single NID to GFP targets the fusion to the cytoplasm. Fusion of a nuclear localization signal (NLS) to full-length Nmi or NID repeats targets the hybrid to the nucleus, suggesting that a strong NLS is dominant to the cytoplasmic localization function of NID. NID may mediate cytoplasmic localization of the full-length Nmi protein through NID-NID protein interactions as demonstrated by yeast two-hybrid assay, immunoprecipitation, and the presence of Nmi in a high molecular weight protein complex. These results suggest that Nmi is composed of a modular structure with an amino-terminal domain that when separated from the rest of the protein is nuclear. The carboxy-terminal two thirds of the protein is composed of two NID that mediate cytoplasmic localization of the full-length protein.
Collapse
Affiliation(s)
- N D Lee
- Department of Pediatrics, Stanford Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination.
Collapse
Affiliation(s)
- Wim Van Criekinge
- DEVGEN NV. Technologiepark 9, 9052 Zwijnaarde-Gent. Belgium.; Department of Molecular Biology. Flanders Interuniversity Institute for Biotechnology and University of Ghent, B-9000, Ghent. Belgium.
| | | |
Collapse
|
11
|
Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 1999; 19:6085-97. [PMID: 10454556 PMCID: PMC84524 DOI: 10.1128/mcb.19.9.6085] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 05/11/1999] [Indexed: 01/08/2023] Open
Abstract
Steroid receptors are conditional transcription factors that, upon binding to their response elements, regulate the expression of target genes via direct protein interactions with transcriptional coactivators. We have analyzed the functional interactions between the androgen receptor (AR) and 160-kDa nuclear receptor coactivators. Upon overexpression in mammalian cells, these coactivators enhance the transcriptional activity of both the amino-terminal domain (NTD) and the ligand-binding domain (LBD) of the AR. The coactivator activity for the LBD is strictly ligand-controlled and depends on the nature of the DNA-binding domain to which it is fused. We demonstrate that the NTD physically interacts with coactivators and with the LBD and that this interaction, like the functional interaction between the LBD and p160 coactivators, relies on the activation function 2 (AF2) core domain. The mutation of a highly conserved lysine residue in the predicted helix 3 of the LBD (K720A), however, blunts the functional interaction with coactivators but not with the NTD. Moreover, this mutation does not affect the transcriptional activity of the full-size AR. A mutation in the NTD of activation function AF1a (I182A/L183A), which dramatically impairs the activity of the AR, has no effect on the intrinsic transcriptional activity of the NTD but interferes with the cooperation between the NTD and the LBD. Finally, p160 proteins in which the three LXXLL motifs are mutated retain most of their coactivator activity for the full-size AR, although they are no longer functional for the isolated LBD. Together, these data suggest that in the native AR the efficient recruitment of coactivators requires a functional association of the NTD with the LBD and that the binding of coactivators occurs primarily through the NTD.
Collapse
Affiliation(s)
- P Alen
- Division of Biochemistry, Faculty of Medicine, University of Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Schneider S, Buchert M, Georgiev O, Catimel B, Halford M, Stacker SA, Baechi T, Moelling K, Hovens CM. Mutagenesis and selection of PDZ domains that bind new protein targets. Nat Biotechnol 1999; 17:170-5. [PMID: 10052354 DOI: 10.1038/6172] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PDZ domains are a recently characterized protein-recognition module. In most cases, PDZ domains bind to the C-terminal end of target proteins and are thought thereby to link these target proteins into functional signaling networks. We report the isolation of artificial PDZ domains selected via a mutagenesis screen in vivo, each recognizing a different C-terminal peptide. We demonstrate that the PDZ domains isolated can bind selectively to their target peptides in vitro and in vivo. Two of the target peptides chosen are the C-terminal ends of two cellular transmembrane proteins with which no known PDZ domains have been reported to interact. By targeting these artificial PDZ domains to the nucleus, interacting target peptides were efficiently transported to the same subcellular localization. One of the isolated PDZ domains was tested and shown to be efficiently directed to the plasma membrane when cotransfected with the full-length transmembrane protein in mammalian cells. Thus, artificial PDZ domains can be engineered and used to target intracellular proteins to different subcellular compartments.
Collapse
Affiliation(s)
- S Schneider
- Institut für Medizinische Virologie, Universität Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Buchert M, Schneider S, Meskenaite V, Adams MT, Canaani E, Baechi T, Moelling K, Hovens CM. The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell-cell contact in the brain. J Cell Biol 1999; 144:361-71. [PMID: 9922461 PMCID: PMC2132901 DOI: 10.1083/jcb.144.2.361] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell-cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell-cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.
Collapse
Affiliation(s)
- M Buchert
- Institut für Medizinische Virologie, Universität Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
A variety of assay technologies continue to be developed for high-throughput screening. These include cell-based assays, surrogate systems using microbial cells such as yeast and bacterial two-hybrid and three-hybrid systems, and systems to measure nucleic acid-protein and receptor-ligand interactions. Modifications have been developed for cell-free, homogeneous assay systems, such as time-resolved fluorescence, fluorescence polarization and the scintillation proximity assay. Innovations in engineering and chemistry have led to delivery systems for nanoliter volumes and sensitive biosensors for ultra-high-throughout screening conducted in nanoliter and picoliter volumes. Spectroscopic methods have been extended to read single molecule fluorescence. Technologies are being developed to identify new targets from genomic information in order to design the next generation of screens.
Collapse
Affiliation(s)
- P B Fernandes
- Small Molecule Therapeutics Inc., Monmouth Junction, NJ 08852, USA.
| |
Collapse
|
15
|
Affiliation(s)
- I Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|