1
|
Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q, He S, Zhao G. Advances in the detection of β-lactamase: A review. Int J Biol Macromol 2023; 251:126159. [PMID: 37549760 DOI: 10.1016/j.ijbiomac.2023.126159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
β-lactamase, an enzyme secreted by bacteria, is the main resistant mechanism of Gram-negative bacteria to β-lactam antibiotics. The resistance of bacteria to β-lactam antibiotics can be evaluated by testing the activity of β-lactamase. Traditional phenotypic detection is a golden principle, but it is time-consuming. In recent years, many new methods have emerged, which improve the efficiency by virtue of their sensitivity, low cost, easy operation, and other advantages. In this paper, we systematically review these researches and emphasize their limits of detection, sample operation, and test duration. Noteworthily, some detection systems can identify the β-lactamase subtype conveniently. We mainly divide these tests into three categories to elaborate their characteristics and application status. Both advantages and disadvantages of these methods are discussed. Additionally, we analyze the recent 5 years published researches to predict the trend of development in this field.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110122, China
| | - Huijun Guo
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Tian Peng
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Enjie Ding
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Zhao
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiulan Liu
- General Party Branch of the Second Clinical Department, China Medical University, Shenyang, Liaoning 110122, China
| | - Shiyin He
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China
| | - Guojie Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Sharick JT, Atieh AJ, Gooch KJ, Leight JL. Click chemistry functionalization of self-assembling peptide hydrogels. J Biomed Mater Res A 2023; 111:389-403. [PMID: 36210776 PMCID: PMC10092743 DOI: 10.1002/jbm.a.37460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
Self-assembling peptide (SAP) hydrogels provide a fibrous microenvironment to cells while also giving users control of biochemical and mechanical cues. Previously, biochemical cues were introduced by physically mixing them with SAPs prior to hydrogel assembly, or by incorporating them into the SAP sequence during peptide synthesis, which limited flexibility and increased costs. To circumvent these limitations, we developed "Click SAPs," a novel formulation that can be easily functionalized via click chemistry thiol-ene reaction. Due to its high cytocompatibility, the thiol-ene click reaction is currently used to crosslink and functionalize other types of polymeric hydrogels. In this study, we developed a click chemistry compatible SAP platform by addition of a modified lysine (lysine-alloc) to the SAP sequence, enabling effective coupling of thiol-containing molecules to the SAP hydrogel network. We demonstrate the flexibility of this approach by incorporating a fluorescent dye, a cellular adhesion peptide, and a matrix metalloproteinase-sensitive biosensor using the thiol-ene reaction in 3D Click SAPs. Using atomic force microscopy, we demonstrate that Click SAPs retain the ability to self-assemble into fibers, similar to previous systems. Additionally, a range of physiologically relevant stiffnesses can be achieved by adjusting SAP concentration. Encapsulated cells maintain high viability in Click SAPs and can interact with adhesion peptides and a matrix metalloproteinase biosensor, demonstrating that incorporated molecules retain their biological activity. The Click SAP platform supports easier functionalization with a wider array of bioactive molecules and enables new investigations with temporal and spatial control of the cellular microenvironment.
Collapse
Affiliation(s)
- Joe T Sharick
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Angelina J Atieh
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer L Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,The Center for Cancer Engineering, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Casadei L, Calore F, Braggio DA, Zewdu A, Deshmukh AA, Fadda P, Lopez G, Wabitsch M, Song C, Leight JL, Grignol VP, Lev D, Croce CM, Pollock RE. MDM2 Derived from Dedifferentiated Liposarcoma Extracellular Vesicles Induces MMP2 Production from Preadipocytes. Cancer Res 2019; 79:4911-4922. [PMID: 31387924 DOI: 10.1158/0008-5472.can-19-0203] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
Dedifferentiated liposarcoma (DDLPS) is frequently diagnosed late, and patients typically respond poorly to treatments. DDLPS is molecularly characterized by wild-type p53 and amplification of the MDM2 gene, which results in overexpression of MDM2 protein, a key oncogenic process in DDLPS. In this study, we demonstrate that extracellular vesicles derived from patients with DDLPS or from DDLPS cell lines are carriers of MDM2 DNA that can be transferred to preadipocytes, a major and ubiquitous cellular component of the DDLPS tumor microenvironment, leading to impaired p53 activity in preadipocytes and increased proliferation, migration, and production of matrix metalloproteinase 2; treatment with MDM2 inhibitors repressed these effects. Overall, these findings indicate that MDM2 plays a crucial role in DDLPS by enabling cross-talk between tumor cells and the surrounding microenvironment and that targeting vesicular MDM2 could represent a therapeutic option for treating DDLPS. SIGNIFICANCE: Extracellular vesicles derived from dedifferentiated liposarcoma cells induce oncogenic properties in preadipocytes.
Collapse
Affiliation(s)
- Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Danielle A Braggio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Abeba Zewdu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ameya A Deshmukh
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gonzalo Lopez
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine Division of Paediatric Endocrinology and Diabetes Centre for Hormonal Disorders in Children and Adolescents, Ulm University Hospital, Germany
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| | - Jennifer L Leight
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Ohio
| | - Valerie P Grignol
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Dina Lev
- Department of Surgery "B," Sheba Medical Center and The Tel Aviv University, Tel Aviv, Israel
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Raphael E Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|