1
|
Reza E, Azizi H, Skutella T. Sox2 Localization During Spermatogenesis and Its Association with other Spermatogenesis Markers Using Protein-Protein Network Analysis. J Reprod Infertil 2023; 24:171-180. [PMID: 37663428 PMCID: PMC10471949 DOI: 10.18502/jri.v24i3.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sox2 (SRY box2) is an essential transcription factor that plays a vital role in spermatogenesis and regulates the genes in this process. Sox2 is important for pluripotency, self-renewal, and even spermatogonial stem cell differentiation. This gene is found in pluripotent and specialized cells, and it is involved in their biological activities. Methods Protein-protein interaction (PPI) network analysis was performed during spermatogenesis using NCBI, STRING, and Cytoscape databases. Then, after isolating spermatogonial stem cells from 6 C57BL/6 mice, mouse embryonic stem cells and ES-like cells were prepared. In the following, Sox2 expression was examined in differentiated and undifferentiated spermatogonia by immunohistochemistry (IMH), immunocytochemistry (ICC), and Fluidigm PCR (polymerase chain reaction). Finally, the results were compared using the Kruskal-Wallis and Dunn tests at the significance level of p<0.05. Results The results of this experiment showed that contrary to expectations, Sox2 has cytoplasmic expression in undifferentiated cells and nuclear expression in differentiated cells in in vitro conditions. In addition, the expression of Sox2 increased during differentiation. Fluidigm PCR showed a significantly higher expression of Sox2 (p<0.05) in differentiated compared to undifferentiated spermatogonia. Sox2 has an interaction with other genes during spermatogenesis such as Oct4, Nanog, Klf4, Stra8, Smad1, Tcf3, and Osm. Conclusion Sox2, which is known as a pluripotency marker, has a vital role in spermatogenesis and could be a differential marker. Sox2 has strong connections with other genes such as Oct4, Nanog, Klf4, Tcf3, Osm, Stra8, Lim2, Smad1, Gdnf, and Kit.
Collapse
Affiliation(s)
- Emad Reza
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Chermuła B, Kranc W, Celichowski P, Stelmach B, Piotrowska-Kempisty H, Mozdziak P, Pawelczyk L, Spaczyński RZ, Kempisty B. Cellular Processes in Human Ovarian Follicles Are Regulated by Expression Profile of New Gene Markers—Clinical Approach. J Clin Med 2021; 11:jcm11010073. [PMID: 35011815 PMCID: PMC8745700 DOI: 10.3390/jcm11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the growing ovarian follicle, the maturing oocyte is accompanied by cumulus (CCs) and granulosa (GCs) cells. Currently, there remain many unanswered questions about the epithelial origin of these cells. Global and targeted gene transcript levels were assessed on 1, 7, 15, 30 days of culture for CCs and GCs. Detailed analysis of the genes belonging to epithelial cell-associated ontological groups allowed us to assess a total of 168 genes expressed in CCs (97 genes) and GCs (71 genes) during long-term in vitro culture. Expression changes of the analyzed genes allowed the identification of the group of genes: TGFBR3, PTGS2, PRKX, AHI1, and IL11, whose expression decreased the most and the group of ANXA3, DKK1, CCND1, STC1, CAV1, and SFRP4 genes, whose expression significantly increased. These genes’ expression indicates CCs and GCs epithelialization processes and their epithelial origin. Expression change analysis of genes involved in epithelization processes in GCs and CCs during their in vitro culture made it possible to describe the most significantly altered of the 11 genes. Detailed analysis of gene expression in these two cell populations at different time intervals confirms their ovarian surface epithelial origin. Furthermore, some gene expression profiles appear to have tumorigenic properties, suggesting that granulosa cells may play a role in cancerogenesis.
Collapse
Affiliation(s)
- Błażej Chermuła
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Bogusława Stelmach
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Leszek Pawelczyk
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Robert Zygmunt Spaczyński
- Department of Gynecology, Division of Infertility and Reproductive Endocrinology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61-854-6418; Fax: +48-61-854-6440
| |
Collapse
|
3
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
4
|
Human Granulosa Cells-Stemness Properties, Molecular Cross-Talk and Follicular Angiogenesis. Cells 2021; 10:cells10061396. [PMID: 34198768 PMCID: PMC8229878 DOI: 10.3390/cells10061396] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The ovarian follicle is the basic functional unit of the ovary, comprising theca cells and granulosa cells (GCs). Two different types of GCs, mural GCs and cumulus cells (CCs), serve different functions during folliculogenesis. Mural GCs produce oestrogen during the follicular phase and progesterone after ovulation, while CCs surround the oocyte tightly and form the cumulus oophurus and corona radiata inner cell layer. CCs are also engaged in bi-directional metabolite exchange with the oocyte, as they form gap-junctions, which are crucial for both the oocyte’s proper maturation and GC proliferation. However, the function of both GCs and CCs is dependent on proper follicular angiogenesis. Aside from participating in complex molecular interplay with the oocyte, the ovarian follicular cells exhibit stem-like properties, characteristic of mesenchymal stem cells (MSCs). Both GCs and CCs remain under the influence of various miRNAs, and some of them may contribute to polycystic ovary syndrome (PCOS) or premature ovarian insufficiency (POI) occurrence. Considering increasing female fertility problems worldwide, it is of interest to develop new strategies enhancing assisted reproductive techniques. Therefore, it is important to carefully consider GCs as ovarian stem cells in terms of the cellular features and molecular pathways involved in their development and interactions as well as outline their possible application in translational medicine.
Collapse
|
5
|
Moghadam AR, Taheri Moghadam M, Saki G, Nikbakht R. Utilizing Calcium Alginate for the Assessment of Bone Morphogenetic Protein 15 Induction Effect on the Differentiation of Mesenchymal Stem Cell Derived from Human Follicular Fluid to Oocyte-Like Structure. Adv Biomed Res 2020; 9:80. [PMID: 33912496 PMCID: PMC8059453 DOI: 10.4103/abr.abr_200_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Follicular fluid (FF)-derived mesenchymal stem cells (MSCs) are possible new source of cells in the study of oogenesis and regenerative medicine. Several biomaterials have been used as scaffolds to mimic ovarian tissue stroma. Using good matrix is essential for increasing the cell survival rate, proliferation, and differentiation. However, no study has been performed to investigate the effects of BMP15 and calcium alginate hydrogel on the differentiation potential of FF-derived MSCs to oocyte-like structures (OLSs). Materials and Methods: In this work, FF MSCs, which were collected from women in routine in vitro fertilization procedure, were capsulated with 0.5% calcium alginate, and then the encapsulated cells were cultured in medium containing BMP15 for 2 weeks. Trypan blue staining was carried out to determine cell viability. Real-time polymerase chain reaction (PCR) and immunofluorescence (ICC) staining method were performed to characterize the expression of OCT4, Nanog, ZP2, and ZP3 genes and protein. The encapsulation process did not change the morphology and viability of the encapsulated cells. Results: Reverse-transcription-PCR and ICC showed that MSCs expressed germ line stem cell markers such as OCT4 and Nanog. After 4 days of culture, OLSs formed and expressed zona pellucida markers. OLSs at least reached 180–230 μm in diameter in the control and BMP15-treated groups. Finally, a reduction in the expression pattern of pluripotency and ZP markers was detected in the encapsulated cells cultured in the BMP15-supplemented medium. Conclusion: The three-dimensional alginate culture system seems to be a promising method of getting in vitro differentiation and development of ovarian cells, which could mimic the native ovarian condition.
Collapse
Affiliation(s)
- Ali Reza Moghadam
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Taheri M, Saki G, Nikbakht R, Eftekhari AR. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol Int 2020; 45:127-139. [PMID: 32997425 DOI: 10.1002/cbin.11475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20-30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.
Collapse
Affiliation(s)
- Mahin Taheri
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali R Eftekhari
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020; 9:E1418. [PMID: 32517362 PMCID: PMC7349183 DOI: 10.3390/cells9061418] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Katarzyna Kulcenty
- Radiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60200 Brno, Czech Republic
| | - Robert Z. Spaczynski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., PL-60-535 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| |
Collapse
|