1
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
2
|
Ai JY, Zhao PC, Zhang W, Rao GW. Research Progress in the Clinical Treatment of Familial Hypercholesterolemia. Curr Med Chem 2024; 31:1082-1106. [PMID: 36733200 DOI: 10.2174/0929867330666230202111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inheritable disease with severe disorders of lipid metabolism. It is mainly marked by increasing levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), xanthoma, corneal arch, and early-onset coronary heart disease (CHD). The prevalence of FH is high, and it is dangerous and clinically underdiagnosed. The clinical treatment for FH includes both pharmacological and non-pharmacological treatment, of which non-pharmacological treatment mainly includes therapeutic lifestyle change and dietary therapy, LDL apheresis, liver transplantation and gene therapy. In recent years, many novel drugs have been developed to treat FH more effectively. In addition, the continuous maturity of non-pharmacological treatment techniques has also brought more hope for the treatment of FH. This paper analyzes the pathogenic mechanism and the progress in clinical treatment of FH. Furthermore, it also summarizes the mechanism and structure-activity relationship of FH therapeutic drugs that have been marketed. In a word, this article provides a reference value for the research and development of FH therapeutic drugs.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Peng-Cheng Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
3
|
Giammanco A, Cefalù AB, Noto D, Averna MR. Therapeutic Options for Homozygous Familial Hypercholesterolemia: The Role of Lomitapide. Curr Med Chem 2020; 27:3773-3783. [DOI: 10.2174/0929867326666190121120735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/25/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
Background:Lomitapide (Juxtapid® in US and Lojuxta® in Europe) is the first developed inhibitor of the Microsomal Triglyceride Transfer Protein (MTP) approved as a novel drug for the management of Homozygous Familial Hypercholesterolemia (HoFH). It acts by binding directly and selectively to MTP thus decreasing the assembly and secretion of the apo-B containing lipoproteins both in the liver and in the intestine.Aims:The present review aims at summarizing the recent knowledge on lomitapide in the management of HoFH.Results:The efficacy and safety of lomitapide have been evaluated in several trials and it has been shown a reduction of the plasma levels of Low-Density Lipoprotein Cholesterol (LDL-C) by an average of more than 50%. Although the most common side effects are gastrointestinal and liver events, lomitapide presents generally with a good tolerability and satisfactory patients compliance. Recently, in Europe, to evaluate the long-term safety and efficacy of lomitapide, the LOWER registry (ClinicalTrials.gov Identifier: NCT02135705) has been established in order to acquire informations on HoFH lomitapidetreated patients from “real life” clinical practice.:Furthermore, the observation that lomitapide decreases triglyceride levels may be considered for patients affected by severe forms of hypertriglyceridemia who undergo recurrent episodes of pancreatitis and are poor responders to conventional treatment.Conclusion:Lomitapide represents an innovative and efficacious drug for the treatment of HoFH. Longterm safety data, treatment of pediatric and pregnant HoFH patients and management of severe hypertriglyceridemia still require further investigations.
Collapse
Affiliation(s)
- Antonina Giammanco
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Angelo B. Cefalù
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Davide Noto
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Maurizio R. Averna
- Dipartimento Biomedico di Medicina Interna e Specialistica (Di.Bi.Mi.S), Policlinico “Paolo Giaccone”, Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
4
|
Gupta M, Blumenthal C, Chatterjee S, Bandyopadhyay D, Jain V, Lavie CJ, Virani SS, Ray KK, Aronow WS, Ghosh RK. Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs 2020; 29:611-622. [PMID: 32363959 DOI: 10.1080/13543784.2020.1764937] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Recent years have brought significant developments in lipid and atherosclerosis research. Although statins are a cornerstone in hyperlipidemia management, new non-statin therapies have had an impact. The reduction of low-density lipoprotein cholesterol (LDL-C) further translates into the lowering of cardiovascular mortality. Additionally, lipid research has progressed beyond LDL-C reduction and this has brought triglyceride (TG) and other apoprotein-B containing lipids into focus. AREAS COVERED Inclisiran and pemafibrate, with expected approval soon, come under the spotlight. We discuss other therapeutics such as lomitapide, mipomersen, volanesorsen, and evinacumab and newly approved non-statin-based therapies such as ezetimibe, icosapent ethyl (IPE), and bempedoic acid. EXPERT OPINION New options now exist for the prevention of atherosclerosis in patients that are not optimized on statin therapy. Multiple guidelines endorse ezetimibe, PCSK9 inhibitors, bempedoic, and IPE as add-on therapy. Recently approved bempedoic acid/ezetimibe combination might gain popularity among clinicians. Inclisiran and pemafibrate show promise in the reduction of LDL-C and TG, respectively, and results are pending in cardiovascular outcome trials. Combination strategies could improve outcomes, but the challenge will be balancing cost and selecting the correct patient population for each treatment modality to maximize benefit with the fewest medications.
Collapse
Affiliation(s)
- Manasvi Gupta
- Department of Internal Medicine, University of Connecticut , Hartford, CT, USA
| | - Colin Blumenthal
- Department of Internal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | | | - Dhrubajyoti Bandyopadhyay
- Department of Internal Medicine, Mount Sinai St Luke's Roosevelt Hospital, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Vardhmaan Jain
- Department of Internal Medicine, Cleveland Clinic , Cleveland, OH, USA
| | - Carl J Lavie
- Ochsner Clinical School, John Ochsner Heart and Vascular Institute, The University of Queensland School of Medicine , New Orleans, LA, USA
| | - Salim S Virani
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center and Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine , Houston, TX, USA
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, London, UK
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center and New York Medical College , New York, USA
| | - Raktim K Ghosh
- MedStar Heart and Vascular Institute, Union Memorial Hospital , Baltimore, MD, USA
| |
Collapse
|
5
|
Tomlinson B, Chan P, Zhang Y, Liu Z, Lam CWK. Pharmacokinetics of current and emerging treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol 2020; 16:371-385. [PMID: 32223657 DOI: 10.1080/17425255.2020.1749261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Reduction of low-density-lipoprotein cholesterol (LDL-C) and other apolipoprotein B (apoB)-containing lipoproteins reduces cardiovascular (CV) events and greater reductions have greater benefits. Current lipid treatments cannot always achieve desirable LDL-C targets and additional or alternative treatments are often needed.Areas covered: In this article, we review the pharmacokinetics of the available and emerging treatments for hypercholesterolemia and focus on recently approved drugs and those at a late stage of development.Expert opinion: Statin pharmacokinetics are well known and appropriate drugs and doses can usually be chosen for individual patients to achieve LDL-C targets and avoid adverse effects and drug-drug interactions. Ezetimibe, icosapent ethyl and the monoclonal antibodies evolocumab and alirocumab have established efficacy and safety. Newer oral agents including pemafibrate and bempedoic acid have generally favorable pharmacokinetics supporting use in a wide range of patients. RNA-based therapies with antisense oligonucleotides are highly specific for their targets and those inhibiting apoB, apoCIII, angiopoietin-like protein 3 and lipoprotein(a) have shown promising results. The small-interfering RNA inclisiran has the notable advantage that a single subcutaneous administration may be effective for up to 6 months. The CV outcome trial results and long term safety data are eagerly awaited for these new agents.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
6
|
Rodriguez-Calvo R, Masana L. Review of the scientific evolution of gene therapy for the treatment of homozygous familial hypercholesterolaemia: past, present and future perspectives. J Med Genet 2019; 56:711-717. [DOI: 10.1136/jmedgenet-2018-105713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 11/03/2022]
Abstract
Familial hypercholesterolaemia (FH) is a devastating genetic disease that leads to extremely high cholesterol levels and severe cardiovascular disease, mainly caused by mutations in any of the main genes involved in low-density lipoprotein cholesterol (LDL-C) uptake. Among these genes, mutations in the LDL receptor (LDLR) are responsible for 80%–90% of the FH cases. The severe homozygous variety (HoFH) is not successfully treated with standard cholesterol-lowering therapies, and more aggressive strategies must be considered to mitigate the effects of this disease, such as weekly/biweekly LDL apheresis. However, development of new therapeutic approaches is needed to cure HoFH. Because HoFH is mainly due to mutations in theLDLR, this disease has been proposed as an ideal candidate for gene therapy. Several preclinical studies have proposed that the transference of functional copies of theLDLRgene reduces circulating LDL-C levels in several models of HoFH, which has led to the first clinical trials in humans. Additionally, the recent development of clustered regularly interspaced short palindromic repeat/CRISPR-associated 9 technology for genome editing has opened the door to therapies aimed at directly correcting the specific mutation in the endogenousLDLRgene. In this article, we review the genetic basis of the FH disease, paying special attention to the severe HoFH as well as the challenges in its diagnosis and clinical management. Additionally, we discuss the current therapies for this disease and the new emerging advances in gene therapy to target a definitive cure for this disease.
Collapse
|
7
|
Phuong Kim T, Thuan Duc L, Thuy Ai HL. The Major Molecular Causes of Familial Hypercholesterolemia. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2018. [DOI: 10.18311/ajprhc/2018/20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Zodda D, Giammona R, Schifilliti S. Treatment Strategy for Dyslipidemia in Cardiovascular Disease Prevention: Focus on Old and New Drugs. PHARMACY 2018; 6:pharmacy6010010. [PMID: 29361723 PMCID: PMC5874549 DOI: 10.3390/pharmacy6010010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
Prevention and treatment of dyslipidemia should be considered as an integral part of individual cardiovascular prevention interventions, which should be addressed primarily to those at higher risk who benefit most. To date, statins remain the first-choice therapy, as they have been shown to reduce the risk of major vascular events by lowering low-density lipoprotein cholesterol (LDL-C). However, due to adherence to statin therapy or statin resistance, many patients do not reach LDL-C target levels. Ezetimibe, fibrates, and nicotinic acid represent the second-choice drugs to be used in combination with statins if lipid targets cannot be reached. In addition, anti-PCSK9 drugs (evolocumab and alirocumab) provide an effective solution for patients with familial hypercholesterolemia (FH) and statin intolerance at very high cardiovascular risk. Recently, studies demonstrated the effects of two novel lipid-lowering agents (lomitapide and mipomersen) for the management of homozygous FH by decreasing LDL-C values and reducing cardiovascular events. However, the costs for these new therapies made the cost–effectiveness debate more complicated.
Collapse
Affiliation(s)
- Donatella Zodda
- Drug Department of Local Health Unit (ASP), Viale Giostra, 98168 Messina, Italy.
| | - Rosario Giammona
- Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Silvia Schifilliti
- Clinical Pharmacy Fellowship, University of Messina, Viale Annunziata, 98168 Messina, Italy.
| |
Collapse
|
9
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
10
|
Berberich AJ, Hegele RA. Lomitapide for the treatment of hypercholesterolemia. Expert Opin Pharmacother 2017; 18:1261-1268. [DOI: 10.1080/14656566.2017.1340941] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Amanda J. Berberich
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A. Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
11
|
Neef D, Berthold HK, Gouni-Berthold I. Lomitapide for use in patients with homozygous familial hypercholesterolemia: a narrative review. Expert Rev Clin Pharmacol 2016; 9:655-63. [DOI: 10.1586/17512433.2016.1162095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Hsiao PJ, Lee MY, Wang YT, Jiang HJ, Lin PC, Yang YHC, Kuo KK. MTTP-297H polymorphism reduced serum cholesterol but increased risk of non-alcoholic fatty liver disease-a cross-sectional study. BMC MEDICAL GENETICS 2015; 16:93. [PMID: 26458397 PMCID: PMC4603340 DOI: 10.1186/s12881-015-0242-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Background Microsomal triglyceride transfer protein (MTP) works to lipidate and assemble the apoB-containing lipoproteins in liver. It closely links up the hepatic secretion of lipid to regulate serum lipid and atherosclerosis. Cases of MTTP gene mutation is characterized by abetalipoproteinemia and remarkable hepatic steatosis or cirrhosis. Several MTTP polymorphisms have been reported relating to metabolic syndrome, hyperlipidemia and steatohepatitis. We supposed the regulation of serum lipids and risk of non-alcoholic fatty liver disease (NAFLD) formation may be modified by individual susceptibility related to the MTTP polymorphisms. Methods and results A cross-sectional population of 1193 subjects, 1087 males and 106 females mean aged 45.9 ± 8.9 years, were enrolled without recognized secondary hyperlipidemia. Fasting serum lipid, insulin, and non-esterified fatty acid were assessed and transformed to insulin resistance index, HOMA-IR and Adipo-IR. After ruling out alcohol abuser, non-alcoholic fatty liver disease (NAFLD) was diagnosed by abdominal ultrasound. Five common MTTP polymorphisms (promoter -493G/T, E98D, I128T, N166S, and Q297H) were conducted by TaqMan assay. Multivariate regression analysis was used to estimate their impact on serum lipid and NAFLD risk. Assessment revealed a differential impact on LDL-C and non-HDL-C, which were sequentially determined by the Q297H polymorphism, insulin resistance, body mass index and age. Carriers of homozygous minor allele (297H) had significantly lower LDL-C and non-HDL-C but higher risk for NAFLD. Molecular modeling of the 297H variant demonstrated higher free energy, potentially referring to an unstable structure and functional sequence. Conclusion These results evidenced the MTTP polymorphisms could modulate the lipid homeostasis to determine the serum lipids and risk of NAFLD. The MTTP 297H polymorphism interacted with age, insulin resistance and BMI to decrease serum apoB containing lipoproteins (LDL-C and non-HDL-C) but increase the risk of NAFLD formation. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0242-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan.
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - He-Jiun Jiang
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine; Kaohsiung Municipal Siaogang Hospital, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yi-Hsin Connie Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Kung-Kai Kuo
- School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan. .,Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Patel G, King A, Dutta S, Korb S, Wade JR, Foulds P, Sumeray M. Evaluation of the effects of the weak CYP3A inhibitors atorvastatin and ethinyl estradiol/norgestimate on lomitapide pharmacokinetics in healthy subjects. J Clin Pharmacol 2015; 56:47-55. [DOI: 10.1002/jcph.581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Gina Patel
- Covance Early Clinical Biometrics; Madison WI USA
| | - Alex King
- Covance Clinical Research Unit, Inc.; Dallas TX USA
| | | | - Sarah Korb
- Covance Early Clinical Biometrics; Madison WI USA
| | | | | | - Mark Sumeray
- Aegerion Pharmaceuticals, Inc.; Cambridge MA USA
| |
Collapse
|
14
|
Agarwala A, Jones P, Nambi V. The role of antisense oligonucleotide therapy in patients with familial hypercholesterolemia: risks, benefits, and management recommendations. Curr Atheroscler Rep 2015; 17:467. [PMID: 25398643 DOI: 10.1007/s11883-014-0467-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antisense oligonucleotide therapy is a promising approach for the treatment of a broad variety of medical conditions. It functions at the cellular level by interfering with RNA function, often leading to degradation of specifically targeted abnormal gene products implicated in the disease process. Mipomersen is a novel antisense oligonucleotide directed at apolipoprotein (apoB)-100, the primary apolipoprotein associated with low-density lipoprotein cholesterol (LDL-C), which has recently been approved for the treatment of familial hypercholesterolemia. A number of clinical studies have demonstrated its efficacy in lowering LDL-C and apoB levels in patients with elevated LDL-C despite maximal medical therapy using conventional lipid-lowering agents. This review outlines the risks and benefits of therapy and provides recommendations on the use of mipomersen.
Collapse
Affiliation(s)
- Anandita Agarwala
- Department of Medicine, Baylor College of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, One Baylor Plaza, Houston, TX, 77030, USA,
| | | | | |
Collapse
|