1
|
Malcolm JR, Bridge KS, Holding AN, Brackenbury WJ. Identification of robust RT-qPCR reference genes for studying changes in gene expression in response to hypoxia in breast cancer cell lines. BMC Genomics 2025; 26:59. [PMID: 39838295 PMCID: PMC11748566 DOI: 10.1186/s12864-025-11216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to normalise mRNA levels, allowing accurate assessment of transcriptional changes. However, hypoxia reprograms transcription and post-transcriptional processing of RNA such that favoured RGs including GAPDH or PGK1 are unsuitable for this purpose. To address the need for robust RGs to study hypoxic breast cancer cell lines, we identified 10 RG candidates by analysing public RNA-seq data of MCF-7 and T-47D (Luminal A), and, MDA-MB-231 and MDA-MB-468 (triple negative breast cancer (TNBC)) cells cultured in normoxia or hypoxia. We used RT-qPCR to determine RG candidate levels in normoxic breast cancer cells, removing TBP and EPAS1 from downstream analysis due to insufficient transcript abundance. Assessing primer efficiency further removed ACTB, CCSER2 and GUSB from consideration. Following culture in normoxia, acute, or chronic hypoxia, we ascertained robust non-variable RGs using RefFinder. Here we present RPLP1 and RPL27 as optimal RGs for our panel of two Luminal A and two TNBC cell lines cultured in normoxia or hypoxia. Our result enables accurate evaluation of gene expression in selected hypoxic breast cancer cell lines and provides an essential resource for assessing the impact of hypoxia on breast cancer progression.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Katherine S Bridge
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Centre for Blood Research, University of York, York, YO10 5DD, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Sitte Z, Miranda Buzetta AA, Jones SJ, Lin ZW, Whitman NA, Lockett MR. Paper-Based Coculture Platform to Evaluate the Effects of Fibroblasts on Estrogen Signaling in ER+ Breast Cancers. ACS MEASUREMENT SCIENCE AU 2023; 3:479-487. [PMID: 38145029 PMCID: PMC10740124 DOI: 10.1021/acsmeasuresciau.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
Cell-based assays enable molecular-level studies of cellular responses to drug candidates or potential toxins. Transactivation assays quantify the activation or inhibition of nuclear receptors, key transcriptional regulators of gene targets in mamalian cells. One such assay couples the expression of luciferase to the transcriptional activity of estrogen receptor-alpha (ERα). While this assay is regularly used to screen for agonists and antagonists of the estrogen signaling pathway, the setup relies on monolayer cultures in which cells are plated directly onto the surface of cell-compatible plasticware. The tumor microenvironment is more than a collection of cancerous cells and is profoundly influenced by tissue architecture, the presence of extracellular matrices, and intercellular signaling molecules produced by non-cancerous neighboring cells (e.g., fibroblasts). There exists a need for three-dimensional culture platforms that can be rapidly prototyped to assess new configurations and readily produced in the large numbers needed for translational studies and screening applications. Here, we demonstrate the utility of the paper-based culture platform to probe the effects of intercellular signaling between two cell types. We used paper scaffolds to generate tumor-like environments, forming a defined volume of breast cancer cells suspended in collagen. By placing the paper scaffolds in commercial 96-well plates, we compared monocultures of only breast cancer cells with coculture configurations containing fibroblasts in different locations that mimicked the stages of breast cancer progression. We show that ERα transactivation in the T47D-KBluc cell line is affected by the presence, number, and proximity of fibroblasts, and is a consequence of intercellular signaling molecules. After screening a small library of fibroblast-secreted signaling molecules, we showed that interleukin-6 (IL-6) was the primary driver of reduced estradiol sensitivity. These effects were mitigated in the coculture configurations by the addition of an IL-6 neutralizing antibody. We also assessed estrogen receptor expression and transcriptional regulation, further demonstrating the utility of the paper-based platform for detailed mechanistic studies.
Collapse
Affiliation(s)
- Zachary
R. Sitte
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Abel Andre Miranda Buzetta
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Sarina J. Jones
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Zhi-Wei Lin
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Nathan Ashbrook Whitman
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Matthew R. Lockett
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, North Carolina 27599-7295, United States
| |
Collapse
|
3
|
Inalegwu A, Cuypers B, Claesen J, Janssen A, Coolkens A, Baatout S, Laukens K, De Vos WH, Quintens R. Fractionated irradiation of MCF7 breast cancer cells rewires a gene regulatory circuit towards a treatment-resistant stemness phenotype. Mol Oncol 2022; 16:3410-3435. [PMID: 35579852 PMCID: PMC9533694 DOI: 10.1002/1878-0261.13226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/07/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is the standard of care for breast cancer. However, surviving radioresistant cells can repopulate following treatment and provoke relapse. Better understanding of the molecular mechanisms of radiation resistance may help improve treatment of radioresistant tumors. To emulate radiation therapy at the cellular level, we exposed MCF7 breast cancer cells to daily radiation doses of 2 Gy up to an accumulated dose of 20 Gy. Fractionally irradiated cells (FIR20) displayed increased clonogenic survival and population doubling time as compared to age-matched sham-irradiated cells and untreated parental MCF7 cells. RNA-sequencing revealed a core signature of 229 mRNAs and 7 circular RNAs of which the expression was significantly altered in FIR20 cells. Dysregulation of several top genes was mirrored at the protein level. The FIR20 cell transcriptome overlapped significantly with canonical radiation response signatures and demonstrated a remarkable commonality with radiation and endocrine therapy resistance expression profiles, suggesting crosstalk between both acquired resistance pathways, as indicated by reduced sensitivity to tamoxifen cytotoxicity of FIR20 cells. Using predictive analyses and functional enrichment, we identified a gene-regulatory network that promotes stemness and inflammatory signaling in FIR20 cells. We propose that these phenotypic traits render breast cancer cells more radioresistant but may at the same time serve as potential targets for combination therapies.
Collapse
Affiliation(s)
- Auchi Inalegwu
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400, Mol, Belgium.,Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610, Antwerp, Belgium.,Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020, Antwerp, Belgium.,Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Bart Cuypers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam UMC, VU, Amsterdam, Netherlands
| | - Ann Janssen
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400, Mol, Belgium
| | - Amelie Coolkens
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400, Mol, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020, Antwerp, Belgium
| | - Winnok H De Vos
- Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610, Antwerp, Belgium.,Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium.,µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Roel Quintens
- Radiobiology Unit, SCK CEN, Belgian Nuclear Research Centre, 2400, Mol, Belgium
| |
Collapse
|
4
|
Alday-Parejo B, Richard F, Wörthmüller J, Rau T, Galván JA, Desmedt C, Santamaria-Martinez A, Rüegg C. MAGI1, a New Potential Tumor Suppressor Gene in Estrogen Receptor Positive Breast Cancer. Cancers (Basel) 2020; 12:cancers12010223. [PMID: 31963297 PMCID: PMC7016640 DOI: 10.3390/cancers12010223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an intracellular adaptor protein that stabilizes epithelial junctions consistent with a tumor suppressive function in several cancers of epithelial origin. Here we report, based on experimental results and human breast cancer (BC) patients’ gene expression data, that MAGI1 is highly expressed and acts as tumor suppressor in estrogen receptor (ER)+/HER2− but not in HER2+ or triple negative breast cancer (TNBC). Within the ER+/HER2− subset, high MAGI1 expression associates with ESR1 and luminal genes GATA3 and FOXA1 expression and better prognosis, while low MAGI1 levels correlates with higher histological grade, more aggressive phenotype and worse prognosis. Experimentally, MAGI1 downregulation in the ER+ human BC cells MCF7 impairs ER expression and signaling, promotes cell proliferation, and reduces apoptosis and epithelial differentiation. MAGI1 downregulation in the ER+ murine BC cell line 67NR accelerates primary tumor growth and enhances experimental lung metastasis formation. MAGI1 expression is upregulated by estrogen/ER, downregulated by prostaglandin E2/COX-2axis, and negatively correlates with inflammation in ER+/HER2− BC patients. Taken together, we show that MAGI1 is a new potential tumor suppressor in ER+/HER2− breast cancer with possible prognostic value for the identification of patients at high-risk of relapse within this subset.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
| | - Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
| | - Tilman Rau
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - José A. Galván
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (T.R.); (J.A.G.)
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3001 Leuven, Belgium;
- Correspondence: (C.D.); (C.R.)
| | - Albert Santamaria-Martinez
- Tumor Ecology Laboratory, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (B.A.-P.); (J.W.)
- Correspondence: (C.D.); (C.R.)
| |
Collapse
|
5
|
Sang X, Han H, Li T, Lin SX. Mutual regulations and breast cancer cell control by steroidogenic enzymes: Dual sex-hormone receptor modulation upon 17β-HSD7 inhibition. J Steroid Biochem Mol Biol 2019; 193:105411. [PMID: 31207361 DOI: 10.1016/j.jsbmb.2019.105411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear. In this study, MCF-7 and T47D cells were treated with inhibitors of 17β-HSD1, 17β-HSD7, aromatase or steroid sulfatase (STS), then mRNA levels of 17β-HSD7, STS, 11β-HSD 2, estrogen receptors α (ERα) and androgen receptor (AR) were determined by Q-PCR. ER negative cell line MDA-MB-231 was used as a negative control. Our results demonstrate that 17β-HSD7, STS and 11β-HSD2 are all regulated by the same estrogen estradiol via ERα. When the gene of ERα (ESR1) was knocked down, there was no longer significant mutual regulation of these enzymes. Our results demonstrate that important steroidogenic enzymes transcriptionally regulated by ERα, can be mutually closely correlated. Inhibition of one of them can reduce the expression of another, thereby amplifying the role of the inhibition. Furthermore, inhibition of 17β-HSD7 increases the expression of AR gene which is considered as a marker for better prognosis in ER + breast cancer, while maintaining ERα level. Thus, our mechanistic finding provides a base for further improving the endocrine therapy of ER + breast cancer, e.g., for selecting the target steroid enzymes, and for the combined targeting of human 17β-HSD7 and ERα.
Collapse
Affiliation(s)
- Xiaoye Sang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Hui Han
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tang Li
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, 2705 Boulevard Laurier, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
6
|
Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11050646. [PMID: 31083383 PMCID: PMC6562440 DOI: 10.3390/cancers11050646] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15–20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.
Collapse
|
7
|
Li W, Xu L, Che X, Li H, Zhang Y, Song N, Wen T, Hou K, Yang Y, Zhou L, Xin X, Xu L, Zeng X, Shi S, Liu Y, Qu X, Teng Y. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells. BMC Cancer 2018; 18:507. [PMID: 29720121 PMCID: PMC5930956 DOI: 10.1186/s12885-018-4387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. Methods MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. Results MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Conclusions Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex. Electronic supplementary material The online version of this article (10.1186/s12885-018-4387-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Haizhou Li
- Jinzhou Center Hospital, Jinzhou, 121000, Liaoning, China
| | - Ye Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, 110001, Liaoning, China
| | - Lu Zhou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xing Xin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xue Zeng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Yuee Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
8
|
Le Dily F, Beato M. Signaling by Steroid Hormones in the 3D Nuclear Space. Int J Mol Sci 2018; 19:E306. [PMID: 29360755 PMCID: PMC5855546 DOI: 10.3390/ijms19020306] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/30/2023] Open
Abstract
Initial studies showed that ligand-activated hormone receptors act by binding to the proximal promoters of individual target genes. Genome-wide studies have now revealed that regulation of transcription by steroid hormones mainly depends on binding of the receptors to distal regulatory elements. Those distal elements, either enhancers or silencers, act on the regulation of target genes by chromatin looping to the gene promoters. In the nucleus, this level of chromatin folding is integrated within dynamic higher orders of genome structures, which are organized in a non-random fashion. Terminally differentiated cells exhibit a tissue-specific three-dimensional (3D) organization of the genome that favors or restrains the activity of transcription factors and modulates the function of steroid hormone receptors, which are transiently activated upon hormone exposure. Conversely, integration of the hormones signal may require modifications of the 3D organization to allow appropriate transcriptional outcomes. In this review, we summarize the main levels of organization of the genome, review how they can modulate the response to steroids in a cell specific manner and discuss the role of receptors in shaping and rewiring the structure in response to hormone. Taking into account the dynamics of 3D genome organization will contribute to a better understanding of the pleiotropic effects of steroid hormones in normal and cancer cells.
Collapse
Affiliation(s)
- François Le Dily
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Miguel Beato
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Doctor Aiguader 88, 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|