1
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
2
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jdeed S, Lengyel M, Uray IP. Redistribution of the SWI/SNF Complex Dictates Coordinated Transcriptional Control over Epithelial–Mesenchymal Transition of Normal Breast Cells through TGF-β Signaling. Cells 2022; 11:cells11172633. [PMID: 36078038 PMCID: PMC9454592 DOI: 10.3390/cells11172633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic targets in cancer cells defective for the tumor suppressor ARID1A are fundamentals of synthetic lethal strategies. However, whether modulating ARID1A function in premalignant breast epithelial cells could be exploited to reduce carcinogenic potential remains to be elucidated. In search of chromatin-modulating mechanisms activated by anti-proliferative agents in normal breast epithelial (HME-hTert) cells, we identified a distinct pattern of genome-wide H3K27 histone acetylation marks characteristic for the combined treatment by the cancer preventive rexinoid bexarotene (Bex) and carvedilol (Carv). Among these marks, several enhancers functionally linked to TGF-β signaling were enriched for ARID1A and Brg1, subunits within the SWI/SNF chromatin-remodeling complex. The recruitment of ARID1A and Brg1 was associated with the suppression of TGFBR2, KLF4, and FoxQ1, and the induction of BMP6, while the inverse pattern ensued upon the knock-down of ARID1A. Bex+Carv treatment resulted in fewer cells expressing N-cadherin and dictated a more epithelial phenotype. However, the silencing of ARID1A expression reversed the ability of Bex and Carv to limit epithelial–mesenchymal transition. The nuclear levels of SMAD4, a canonical mediator of TGF-β action, were more effectively suppressed by the combination than by TGF-β. In contrast, TGF-β treatment exceeded the ability of Bex+Carv to lower nuclear FoxQ1 levels and induced markedly higher E-cadherin positivity, indicating a target-selective antagonism of Bex+Carv to TGF-β action. In summary, the chromatin-wide redistribution of ARID1A by Bex and Carv treatment is instrumental in the suppression of genes mediating TGF-β signaling, and, thus, the morphologic reprogramming of normal breast epithelial cells. The concerted engagement of functionally linked targets using low toxicity clinical agents represents an attractive new approach for cancer interception.
Collapse
|
4
|
Nasopharyngeal Carcinoma: The Role of the EGFR in Epstein-Barr Virus Infection. Pathogens 2021; 10:pathogens10091113. [PMID: 34578147 PMCID: PMC8470510 DOI: 10.3390/pathogens10091113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023] Open
Abstract
Epstein-Barr virus (EBV), a type 4 γ herpes virus, is recognized as a causative agent in nasopharyngeal carcinoma (NPC). Incidence of EBV-positive NPC have grown in recent decades along with worse outcomes compared with their EBV-negative counterparts. Latent membrane protein 1 (LMP1), encoded by EBV, induces NPC progression. The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases (RTK), is a driver of tumorigenesis, including for NPC. Little data exist on the relationship between EGFR and EBV-induced NPC. In our initial review, we found that LMP1 promoted the expression of EGFR in NPC in two main ways: the NF-κB pathway and STAT3 activation. On the other hand, EGFR also enhances EBV infection in NPC cells. Moreover, activation of EGFR signalling affects NPC cell proliferation, cell cycle progression, angiogenesis, invasion, and metastasis. Since EGFR promotes tumorigenesis and progression by downstream signalling pathways, causing poor outcomes in NPC patients, EGFR-targeted drugs could be considered a newly developed anti-tumor drug. Here, we summarize the major studies on EBV, EGFR, and LMP1-regulatory EGFR expression and nucleus location in NPC and discuss the clinical efficacy of EGFR-targeted agents in locally advanced NPC (LA NPC) and recurrent or metastatic NPC (R/M NPC) patients.
Collapse
|
5
|
Onodera Y, Takagi K, Neoi Y, Sato A, Yamaguchi M, Miki Y, Ebata A, Miyashita M, Sasano H, Suzuki T. Forkhead Box I1 in Breast Carcinoma as a Potent Prognostic Factor. Acta Histochem Cytochem 2021; 54:123-130. [PMID: 34511651 PMCID: PMC8424250 DOI: 10.1267/ahc.21-00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (FOX) proteins are family of transcriptional factors and regulate cell growth and differentiation as well as embryogenesis and longevity. Previous studies have demonstrated that several FOX members regulate growth or metastasis of breast carcinoma, but clinical significance of total FOX members remains unclear. We first examined associations between expression of 40 FOX genes and TNM status of 19 breast carcinoma using microarray data. Subsequently, we immunolocalized FOXI1 in 140 breast carcinomas and evaluated its clinicopathological significance. In the microarray analysis, we newly identified that gene expression of FOXI1 was most pronouncedly linked to metastasis of the breast carcinoma among the FOX members examined. However, clinicopathological significance of FOXI1 has not been examined in the breast carcinoma. FOXI1 immunoreactivity was positive in 44 out of 140 (31%) of breast carcinomas, and it was significantly associated with stage, lymph node metastasis and distant metastasis. The FOXI1 status was significantly associated with worse prognosis of the breast cancer patients, and it turned out to be an independent prognostic factor for both distant disease-free survival and breast cancer-specific survival. These findings suggest that FOXI1 plays important roles in the metastasis of breast carcinoma and immunohistochemical FOXI1 status is a potent prognostic factor.
Collapse
Affiliation(s)
- Yoshiaki Onodera
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Yoshimi Neoi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Mio Yamaguchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine
| |
Collapse
|