1
|
Amengual-Cladera E, Morla-Barcelo PM, Morán-Costoya A, Sastre-Serra J, Pons DG, Valle A, Roca P, Nadal-Serrano M. Metformin: From Diabetes to Cancer-Unveiling Molecular Mechanisms and Therapeutic Strategies. BIOLOGY 2024; 13:302. [PMID: 38785784 PMCID: PMC11117706 DOI: 10.3390/biology13050302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Metformin, a widely used anti-diabetic drug, has garnered attention for its potential in cancer management, particularly in breast and colorectal cancer. It is established that metformin reduces mitochondrial respiration, but its specific molecular targets within mitochondria vary. Proposed mechanisms include inhibiting mitochondrial respiratory chain Complex I and/or Complex IV, and mitochondrial glycerophosphate dehydrogenase, among others. These actions lead to cellular energy deficits, redox state changes, and several molecular changes that reduce hyperglycemia in type 2 diabetic patients. Clinical evidence supports metformin's role in cancer prevention in type 2 diabetes mellitus patients. Moreover, in these patients with breast and colorectal cancer, metformin consumption leads to an improvement in survival outcomes and prognosis. The synergistic effects of metformin with chemotherapy and immunotherapy highlights its potential as an adjunctive therapy for breast and colorectal cancer. However, nuanced findings underscore the need for further research and stratification by molecular subtype, particularly for breast cancer. This comprehensive review integrates metformin-related findings from epidemiological, clinical, and preclinical studies in breast and colorectal cancer. Here, we discuss current research addressed to define metformin's bioavailability and efficacy, exploring novel metformin-based compounds and drug delivery systems, including derivatives targeting mitochondria, combination therapies, and novel nanoformulations, showing enhanced anticancer effects.
Collapse
Affiliation(s)
- Emilia Amengual-Cladera
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Pere Miquel Morla-Barcelo
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Andrea Morán-Costoya
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
| | - Jorge Sastre-Serra
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Gabriel Pons
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| | - Adamo Valle
- Grupo Metabolismo Energético y Nutrición, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain; (E.A.-C.); (A.M.-C.); (A.V.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pilar Roca
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercedes Nadal-Serrano
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma, Illes Balears, Spain; (P.M.M.-B.); (J.S.-S.); (D.G.P.); (M.N.-S.)
- Grupo Multidisciplinar de Oncología Traslacional, Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain
| |
Collapse
|
2
|
Wang R, Zhao Y. Effects of Metformin on JNK Signaling Pathway and PD-L1 Expression in Triple Negative Breast Cancer. Cancer Manag Res 2024; 16:259-268. [PMID: 38585433 PMCID: PMC10998504 DOI: 10.2147/cmar.s454960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Metformin has been shown to have the potential to inhibit the proliferation of malignant cells. This study aimed to investigate the regulatory effect of metformin on the expression of programmed death protein ligand 1(PD-L1) and mechanisms in TNBC. Methods Mouse breast cancer cell line 4T1 was co-cultured with metformin, and the effect of metformin on cell proliferation was detected by MTT assay. The effect of metformin on the expression of JNK, RSK2 and CREB was detected by MAPK pathway protein chip. BALB/c mice were inoculated with 4T1 cells with knockdown/overexpression of C-Jun N-terminal kinase (JNK), and administered with metformin. The weight of tumor tissue was observed at the end of the experiment. The expression of PD-L1 in tumor cells was observed by immunofluorescence staining and the level of INF-γwas quantitatively determined by ELISA. Results Metformin inhibited the viability of 4T1 cells and increased the phosphorylation of JNK to reduce the phosphorylation of RSK2 and CREB. Metformin and JNK knockdown reduced the expression of PD-L1 in tumor cells, but there was no significant difference in the weight of tumor tissue. Metformin can reduce the level of INF-γ in tumor tissues, but JNK has no effect. Conclusion Metformin can inhibit the expression of PD-L1 in triple-negative breast cancer mice and improve the tumor microenvironment, but does not reduce the size of the tumor.
Collapse
Affiliation(s)
- Ruibin Wang
- Department of Emergency, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanjie Zhao
- Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
邵 珊, 白 薇, 邹 鹏, 罗 敏, 赵 新, 雷 建. [Metformin suppresses hypoxia-inducible factor-1 α expression in cancer-associated fibroblasts to block tumor-stromal cross-talk in breast cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:428-436. [PMID: 38597433 PMCID: PMC11006696 DOI: 10.12122/j.issn.1673-4254.2024.03.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the mechanism of metformin for regulating tumor-stromal cell cross-talk in breast cancer. METHODS Tumor associated fibroblasts (CAFs) co-cultured with breast cancer cells were treated with metformin, and the changes in expressions of hypoxia-inducible factor-1α (HIF-1α), p-AMPK, stroma-derived factor-1 (SDF-1) and interleukin-8 (IL-8) in the CAFs were detected using ELISA, RT-qPCR or Western blotting; Transwell assay was used to evaluate the invasiveness of the tumor cells and its changes following treatment with exogenous SDF-1, IL-8 and TGF-β1. The effects of HIF-1α shRNA or overexpression plasmid, AMPK shRNA, and treatment with OG (a proline hydroxylase inhibitor) or 2-OXO (a proline hydroxylase activator) were examined on p-AMPK, HIF-1α, SDF-1 and IL-8 expressions and invasiveness of the CAFs. RESULTS Metformin treatment significantly increased the expression levels of p-AMPK, SDF-1 and IL-8 (P<0.05) and decreased HIF-1α expression (P<0.05) without affecting AMPK expression level (P>0.05) in the CAFs. The invasion ability of metformintreated breast cancer cells was significantly decreased (P<0.05). Exogenous SDF-1 and IL-8, HIF-1α overexpression, and OGinduced upregulation of HIF-1α all significantly attenuated the inhibitory effects of metformin on breast cancer cell invasion (P<0.05) and HIF-1α, SDF-1 and IL-8 expressions in CAFs (P<0.05). Transfection with HIF-1α shRNA or treatment with 2-OXO significantly decreased the invasiveness of breast cancer cells (P<0.05). P-AMPK knockdown significantly suppressed the inhibitory effect of metformin on HIF-1α expression in CAFs and on invasion of breast cancer cells (P<0.05). Treatment with TGF-β1 partially decreased the inhibitory effect of metformin on HIF-1α expression in CAFs and invasiveness of the breast cancer cells (P<0.05). CONCLUSION Metformin suppresses HIF-1α expression in CAFs to block tumor-stromal cross talk in breast cancer.
Collapse
Affiliation(s)
- 珊 邵
- 西安交通大学第一附属医院肿瘤内科,陕西 西安 710061Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 薇超 白
- 西安交通大学第一附属医院肿瘤内科,陕西 西安 710061Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 鹏程 邹
- 西安交通大学第一附属医院肿瘤内科,陕西 西安 710061Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 敏娜 罗
- 西安交通大学第一附属医院血液内科,陕西 西安 710061Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 新汉 赵
- 西安交通大学第一附属医院肿瘤内科,陕西 西安 710061Department of Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - 建军 雷
- 西安交通大学第一附属医院肝胆外科,陕西 西安 710061Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Zhao C, Zheng L, Ma Y, Zhang Y, Yue C, Gu F, Niu G, Chen Y. Low-dose metformin suppresses hepatocellular carcinoma metastasis via the AMPK/JNK/IL-8 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241249445. [PMID: 38679570 PMCID: PMC11057349 DOI: 10.1177/03946320241249445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Metformin, an oral hypoglycemic drug, has been suggested to possess antitumour activity in several types of cancers. Additionally, interleukin-8 (IL-8) has been reported to be involved in the development and metastasis of many cancers. However, the effect of metformin on IL-8 expression in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to investigate whether metformin could inhibit IL-8 expression to exert an inhibitory effect on HCC progression. MATERIALS AND METHODS The IL-8 levels were measured in the plasma of 159 HCC patients (86 men, 73 women; average age 56 years) and in the culture supernatant of HCC cells (Hep3B and HuH7) using flow cytometry. In addition, the protein expression levels of IL-8 were also validated by the Human Protein Atlas (HPA) database. The prognostic value of IL-8 was evaluated using the Kaplan-Meier Plotter database. The association between IL-8 expression and immune checkpoints was estimated using the TIMER and The Cancer Genome Atlas (TCGA) databases. What's more, bioinformatics analysis, western blotting, and transwell assays were conducted to illustrate the molecular mechanism of metformin (≤1 mM) on IL-8 in HCC. RESULTS IL-8 expression was found to be increased in the plasma of HCC patients, which is consistent with the expression of IL-8 in HCC cells and tissues. High expression of IL-8 was significantly related to poor prognosis. In addition, IL-8 was positively correlated with immune checkpoints in HCC. Notably, we found that low-dose metformin could inhibit the secretion of IL-8 by HCC cells and the migration of HCC cells. Mechanistically, low-dose metformin significantly suppresses HCC metastasis mainly through the AMPK/JNK/IL-8/MMP9 pathway. CONCLUSION The results indicate that low-dose metformin can inhibit HCC metastasis by suppressing IL-8 expression. Targeting the AMPK/JNK/IL-8 axis may be a promising treatment strategy for patients with HCC metastasis.
Collapse
Affiliation(s)
- Chengwen Zhao
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Lu Zheng
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yuting Ma
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yue Zhang
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Chanjuan Yue
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Feng Gu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Guoping Niu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yongqiang Chen
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Hasanpourghadi M, Chekaoui A, Kurian S, Kurupati R, Ambrose R, Giles-Davis W, Saha A, Xiaowei X, Ertl HC. Treatment with the PPARα agonist fenofibrate improves the efficacy of CD8 + T cell therapy for melanoma. Mol Ther Oncolytics 2023; 31:100744. [PMID: 38075243 PMCID: PMC10701456 DOI: 10.1016/j.omto.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Adoptive transfer of tumor antigen-specific CD8+ T cells can limit tumor progression but is hampered by the T cells' rapid functional impairment within the tumor microenvironment (TME). This is in part caused by metabolic stress due to lack of oxygen and glucose. Here, we report that fenofibrate treatment of human ex vivo expanded tumor-infiltrating lymphocytes (TILs) improves their ability to limit melanoma progression in a patient-derived xenograft (PDX) mouse model. TILs treated with fenofibrate, a peroxisome proliferator receptor alpha (PPARα) agonist, switch from glycolysis to fatty acid oxidation (FAO) and increase the ability to slow the progression of autologous melanomas in mice with freshly transplanted human tumor fragments or injected with tumor cell lines established from the patients' melanomas and ex vivo expanded TILs.
Collapse
Affiliation(s)
| | | | | | - Raj Kurupati
- The Wistar Institute, Philadelphia, PA 19104, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, New Brunswick, NJ, USA
| | | | | | - Amara Saha
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xu Xiaowei
- Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
6
|
Abdelmoneim M, Aboalela MA, Naoe Y, Matsumura S, Eissa IR, Bustos-Villalobos I, Sibal PA, Takido Y, Kodera Y, Kasuya H. The Impact of Metformin on Tumor-Infiltrated Immune Cells: Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:13353. [PMID: 37686159 PMCID: PMC10487782 DOI: 10.3390/ijms241713353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the fate of cancer cells, and tumor-infiltrating immune cells have emerged as key players in shaping this complex milieu. Cancer is one of the leading causes of death in the world. The most common standard treatments for cancer are surgery, radiation therapy, and chemotherapeutic drugs. In the last decade, immunotherapy has had a potential effect on the treatment of cancer patients with poor prognoses. One of the immune therapeutic targeted approaches that shows anticancer efficacy is a type 2 diabetes medication, metformin. Beyond its glycemic control properties, studies have revealed intriguing immunomodulatory properties of metformin. Meanwhile, several studies focus on the impact of metformin on tumor-infiltrating immune cells in various tumor models. In several tumor models, metformin can modulate tumor-infiltrated effector immune cells, CD8+, CD4+ T cells, and natural killer (NK) cells, as well as suppressor immune cells, T regulatory cells, tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs). In this review, we discuss the role of metformin in modulating tumor-infiltrating immune cells in different preclinical models and clinical trials. Both preclinical and clinical studies suggest that metformin holds promise as adjunctive therapy in cancer treatment by modulating the immune response within the tumor microenvironment. Nonetheless, both the tumor type and the combined therapy have an impact on the specific targets of metformin in the TME. Further investigations are warranted to elucidate the precise mechanisms underlying the immunomodulatory effects of metformin and to optimize its clinical application in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Mona Alhussein Aboalela
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Patricia Angela Sibal
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| | - Yuhei Takido
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (M.A.A.); (I.R.E.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan (S.M.)
| |
Collapse
|