1
|
Wang Y, Zheng L, Zhang L, Tai Y, Lin X, Cai Z. Roles of MMP-2 and MMP-9 and their associated molecules in the pathogenesis of keloids: a comprehensive review. Front Pharmacol 2024; 15:1444653. [PMID: 39654616 PMCID: PMC11625567 DOI: 10.3389/fphar.2024.1444653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Keloid scars (keloids), a prototypical form of aberrant scar tissue formation, continue to pose a significant therapeutic challenge within dermatology and plastic surgery due to suboptimal treatment outcomes. Gelatinases are a subgroup of matrix metalloproteinases (MMPs), a family of enzymes that play an important role in the degradation and remodeling of the ECM (a pivotal factor for keloids development). Gelatinases include gelatinase A (MMP-2) and gelatinase B (MMP-9). Since accumulating evidence has shown that gelatinases played a crucial role in the process of keloid formation, we summarized the current knowledge on the association between MMP-2 and MMP-9 expression and the pathological process of keloids through a comprehensive review. This review demonstrated that the interplay between MMP-2, MMP-9, and their regulators, such as TGF-β1/Smad, PI3K/AKT, and LncRNA-ZNF252P-AS1/miR-15b-5p/BTF3 signaling cascades, involved in the intricate balance governing ECM homeostasis, collectively driving the excessive collagen deposition and altered tissue architecture observed in keloids. In summary, this review consolidates the current understanding of MMP-2 and MMP-9 in keloid pathogenesis, shedding light on their intricate involvement in the dysregulated keloids processes. The potential for targeted therapeutic interventions presents promising opportunities for advancing keloid management strategies.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Xuesong Lin
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Zhencheng Cai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Liu Y, Ma TX, Fan PF, Wang Z, Wang Z, Li L. STAT3-induced lncRNA GNAS-AS1 accelerates keloid formation by mediating the miR-196a-5p/CXCL12/STAT3 axis in a feedback loop. Exp Dermatol 2024; 33:e15111. [PMID: 38840411 DOI: 10.1111/exd.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.
Collapse
Affiliation(s)
- Yun Liu
- Department of Plastic and cosmetic Surgery, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Teng-Xiao Ma
- Department of Plastic and cosmetic Surgery, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Peng-Fei Fan
- Department of Plastic and cosmetic Surgery, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ze Wang
- Hainan Medical University, Haikou, Hainan, China
| | - Zhe Wang
- Department of Plastic and cosmetic Surgery, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Lei Li
- Department of Plastic and cosmetic Surgery, Hainan General Hospital (Hainan Affifiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| |
Collapse
|
3
|
Yuan T, Meijia L, Rong C, Jian Y, Lijun H. Identification of novel biomarkers of ferroptosis involved in keloid based on bioinformatics analysis. Int Wound J 2024; 21:e14606. [PMID: 38272797 PMCID: PMC10805535 DOI: 10.1111/iwj.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Keloid is a fibroproliferative disease of unknown aetiology, which has a significant impact the quality of life of patients. Ferroptosis plays an important role in the occurrence and development of fibrosis, but there is still a lack of research related to keloids. The objective of this work was to identify the hub genes related to ferroptosis in keloid to better understand the keloid process. The microarray data (GSE7890 GSE145725, and GSE44270) (23 keloid and 22 normal fibroblast) were analysed via the gene expression comprehensive database (GEO). Only GSE7890 met the FerrDB database. Cell cycle and pathway analysis were performed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to differentially expressed genes (DEG). The differential genes were confirmed in other GEO datasets (GSE145725 and GSE44270), and multi-fibrosis-gene correlation analysed. To validate these hub genes, quantitative real-time PCR (qRT-PCR) was conducted. A total of 581 DEGs were screened, with 417 genes down-regulated and 164 genes up-regulated, with 11 ferroptosis genes significantly up-regulated in both keloid and normal tissue, and 6 genes are consistent with our findings and are associated with multiple fibrosis genes. The qRT-PCR results and tissues of normal skin and keloid agreed with our predictions. Our findings provide new evidence for the ferroptosis-related molecular pathways and biomarker of keloid.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Li Meijia
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Cheng Rong
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuan Jian
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hao Lijun
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
4
|
Lin CX, Chen ZJ, Peng QL, Xiang KR, Xiao DQ, Chen RX, Cui T, Huang YS, Liu HW. The m 6A-methylated mRNA pattern and the activation of the Wnt signaling pathway under the hyper-m 6A-modifying condition in the keloid. Front Cell Dev Biol 2022; 10:947337. [PMID: 36263010 PMCID: PMC9574062 DOI: 10.3389/fcell.2022.947337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The present study was carried out to investigate the global m6A-modified RNA pattern and possible mechanisms underlying the pathogenesis of keloid. Method: In total, 14 normal skin and 14 keloid tissue samples were first collected on clinics. Then, three samples from each group were randomly selected to be verified with the Western blotting to determine the level of methyltransferase and demethylase. The total RNA of all samples in each group was isolated and subjected to the analysis of MeRIP sequencing and RNA sequencing. Using software of MeTDiff and htseq-count, the m6A peaks and differentially expressed genes (DEGs) were determined within the fold change >2 and p-value < 0.05. The top 10 pathways of m6A-modified genes in each group and the differentially expressed genes were enriched by the Kyoto Encyclopedia of Genes and Genomes signaling pathways. Finally, the closely associated pathway was determined using the Western blotting and immunofluorescence staining. Results: There was a higher protein level of WTAP and Mettl3 in the keloid than in the normal tissue. In the keloid samples, 21,020 unique m6A peaks with 6,573 unique m6A-associated genetic transcripts appeared. In the normal tissue, 4,028 unique m6A peaks with 779 m6A-associated modified genes appeared. In the RNA sequencing, there were 847 genes significantly changed between these groups, transcriptionally. The genes with m6A-methylated modification and the upregulated differentially expressed genes between two tissues were both mainly related to the Wnt signaling pathway. Moreover, the hyper-m6A-modified Wnt/β-catenin pathway in keloid was verified with Western blotting. From the immunofluorescence staining results, we found that the accumulated fibroblasts were under a hyper-m6A condition in the keloid, and the Wnt/β-Catenin signaling pathway was mainly activated in the fibroblasts. Conclusion: The fibroblasts in the keloid were under a cellular hyper-m6A-methylated condition, and the hyper-m6A-modified highly expressed Wnt/β-catenin pathway in the dermal fibroblasts might promote the pathogenesis of keloid.
Collapse
Affiliation(s)
- Can-Xiang Lin
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou, China
| | - Zhi-Jing Chen
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou, China
| | - Qi-Lin Peng
- The Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Rong Xiang
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou, China
| | - Du-Qing Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruo-Xi Chen
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States,*Correspondence: Taixing Cui, ; Yue-Sheng Huang, ; Hong-Wei Liu,
| | - Yue-Sheng Huang
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China,*Correspondence: Taixing Cui, ; Yue-Sheng Huang, ; Hong-Wei Liu,
| | - Hong-Wei Liu
- Department of Plastic Surgery of the First Affiliated Hospital of Jinan University, Institute of New Technology of Plastic Surgery of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou, China,*Correspondence: Taixing Cui, ; Yue-Sheng Huang, ; Hong-Wei Liu,
| |
Collapse
|