1
|
Jorda-Gomez P, Vanaclocha V, Vanaclocha A, Atienza CM, Belloch V, Santabarbara JM, Barrios C, Saiz-Sapena N, Medina-Ripoll E, Vanaclocha L. Cadaveric biomechanical studies of ADDISC total lumbar disc prosthesis. Clin Biomech (Bristol, Avon) 2024; 112:106185. [PMID: 38262121 DOI: 10.1016/j.clinbiomech.2024.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Most total disc replacements provide excessive mobility and not reproduce spinal kinematics, inducing zygapophyseal joint arthritic changes and chronic back pain. In cadaveric lumbosacral spines, we studied if a new lumbar disc prosthesis kinematics mimics the intact intervertebral disc. METHODS In eight cold preserved cadaveric lumbosacral spines, we registered the movement ranges in flexion, extension, right and left lateral bending, and rotation in the intact status, post-discectomy, and after our prosthesis implantation, comparing them for each specimen. FINDINGS Comparing the intact lumbosacral spine with the L4-L5 prosthesis implanted specimens, we saw statistically significant differences in lateral bending and right rotation but not in the full range of rotation. Analyzing segments, we also noticed statistically significant differences at L4-L5 in flexion-extension and rotation. On the other hand, the L4-L5 discectomy, compared to the baseline spine condition, showed a statistically significant mobility increase in flexion, extension, lateral bending, and axial rotation, with an abnormal instantaneous center of rotation, which destabilizes the segment partly due to anterior annulus surgical removal. Disc prosthesis implantation reversed these changes in instantaneous center of rotation, but the prosthesis failed to restore the initial range of motion due to the destabilization of the ligaments in the operated disc. INTERPRETATION The ADDISC total disc replacement reproduces the intact disc kinematics and Instantaneous Center of Rotation, but the prosthesis fails to restore the initial range of motion due to ligament destabilization. More studies will be necessary to define a technique that restores the damaged ligaments when implanting the prosthesis.
Collapse
Affiliation(s)
| | | | - Amparo Vanaclocha
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | | | | | - Carlos Barrios
- Catholic University of Valencia, Saint Vincent Martyr, Valencia, Spain
| | | | - Enrique Medina-Ripoll
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Valencia. Spain
| | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Germany
| |
Collapse
|
2
|
Zhu S, Dong R, Liu Z, Liu H, Lu Z, Guo Y. A finite element method study of the effect of vibration on the dynamic biomechanical response of the lumbar spine. Clin Biomech (Bristol, Avon) 2024; 111:106164. [PMID: 38159326 DOI: 10.1016/j.clinbiomech.2023.106164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Studies focusing on lumbar spine biomechanics are very limited, and the mechanism of the effect of vibration on lumbar spine biodynamics is unclear. To provide guidance and reference for lumbar spine biodynamics research and vibration safety assessment, this study aims to investigate the effects of different vibrations on lumbar spine biodynamics. METHODS A validated finite element model of the lumbosacral spine was utilized. The model incorporated a 40 kg mass on the upper side and a 400 N follower preload. As a comparison, another model without a coupled mass was also employed. A sinusoidal acceleration with an amplitude of 1 m/s2 and a frequency of 5 Hz was applied to the upper and lower sides of the model respectively. FINDINGS When the coupled mass point is not introduced: in the case of upper-side excitation, the lumbar spine shows a significantly larger response in the x-direction than in the z-direction, while in the case of lower-side excitation, the lumbar spine experiences rigid body displacement in the z-direction without any movement, deformation, rotation, or stress changes in the x-direction. When the coupled mass point is introduced: both upper and lower-side excitations result in significant differences in z-directional displacement, with relatively small differences in vertebral rotation angle, disc deformation, and stress. Under upper excitation, low-frequency oscillations occur in the x-direction. In both types of excitations, the anterior-posterior deformation of the L2-L3 and L4-L5 intervertebral discs is greater than the vertical deformation. The peak (maximum) disc stress exceeds the average stress and stress amplitude across the entire disc. Regardless of the excitation type, the stress distribution within the disc at the moment of peak displacement remains nearly identical, with the maximum stress consistently localized on the anterior side of the L4-L5 disc. INTERPRETATION Accurately simulating lumbar spine biodynamics requires the inclusion of the upper body mass in the lumbosacral spine model. The physiological curvature of the lumbar spine could escalate the risk of lumbar spine vibration injuries. It is more instructive to apply local high stress in the disc as a lumbar spine vibration safety evaluation parameter.
Collapse
Affiliation(s)
- Shuai Zhu
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - RuiChun Dong
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Zhong Liu
- Oncology Department, ZiBo Central Hospital, Zibo 255000, PR China
| | - Hong Liu
- Oncology Department, ZiBo Central Hospital, Zibo 255000, PR China
| | - ZhuangQi Lu
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - YunQiang Guo
- School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, PR China
| |
Collapse
|
3
|
Vanaclocha A, Vanaclocha V, Atienza CM, Jorda-Gomez P, Diaz-Jimenez C, Garcia-Lorente JA, Saiz-Sapena N, Vanaclocha L. ADDISC lumbar disc prosthesis: Analytical and FEA testing of novel implants. Heliyon 2023; 9:e13540. [PMID: 36816293 PMCID: PMC9929472 DOI: 10.1016/j.heliyon.2023.e13540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
The intact intervertebral disc is a six-freedom degree elastic deformation structure with shock absorption. "Ball-and-socket" TDR do not reproduce these properties inducing zygapophyseal joint overload. Elastomeric TDRs reproduce better normal disc kinematics, but repeated core deformation causes its degeneration. We aimed to create a new TDR (ADDISC) reproducing healthy disc features. We designed TDR, analyzed (Finite Element Analysis), and measured every 500,000 cycles for 10 million cycles of the flexion-extension, lateral bending, and axial rotation cyclic compression bench-testing. In the inlay case, we weighted it and measured its deformation. ADDISC has two semi-spherical articular surfaces, one rotation centre for flexion, another for extension, the third for lateral bending, and a polycarbonate urethane inlay providing shock absorption. The first contact is between PCU and metal surfaces. There is no metal-metal contact up to 2000 N, and CoCr28Mo6 absorbs the load. After 10 million cycles at 1.2-2.0 kN loads, wear 140.96 mg (35.50 mm3), but no implant failures. Our TDR has a physiological motion range due to its articular surfaces' shape and the PCU inlay bumpers, minimizing the facet joint overload. ADDISC mimics healthy disc biomechanics and Instantaneous Rotation Center, absorbs shock, reduces wear, and has excellent long-term endurance.
Collapse
Affiliation(s)
- Amparo Vanaclocha
- Escuela de Doctorado, Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022, Valencia, Spain
| | - Vicente Vanaclocha
- University of Valencia, Avenida de Blasco Ibáñez, 15, 46010 Valencia, Spain,Corresponding author.
| | - Carlos M. Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022 Valencia, Spain,Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Camí de Vera, s/n, 46022 Valencia, Spain
| | - Pablo Jorda-Gomez
- Hospital General Universitario de Castellón, Avenida de Benicàssim, 128, 12004 Castelló de la Plana, Spain
| | - Cristina Diaz-Jimenez
- Industry Association of Navarra, Carretera de Pamplona, 1, 31191 Cordovilla, Navarra, Spain
| | | | - Nieves Saiz-Sapena
- Hospital General Universitario de Valencia, Avenida Tres Cruces 2, Valencia, Spain
| | - Leyre Vanaclocha
- Medius Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, 73760 Ostfildern, Esslingen, Baden-Wurtemberg, Germany
| |
Collapse
|
4
|
Zhang Y, Zhou X, Pijnappels M, Bruijn SM. Differences in Gait Stability and Acceleration Characteristics Between Healthy Young and Older Females. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:763309. [PMID: 36188861 PMCID: PMC9397671 DOI: 10.3389/fresc.2021.763309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Our aim was to evaluate differences in gait acceleration intensity, variability, and stability of feet and trunk between older females (OF) and young females (YF) using inertial sensors. Twenty OF (mean age 68.4, SD 4.1 years) and 18 YF (mean age 22.3, SD 1.7 years) were asked to walk straight for 100 meters at their preferred speed, while wearing inertial sensors on their heels and lower back. We calculated spatiotemporal measures, foot and trunk acceleration characteristics, their variability, and trunk stability using the local divergence exponent (LDE). Two-way ANOVA (such as the factors foot and age), Student's t-test and Mann–Whitney U test were used to compare statistical differences of measures between groups. Cohen's d effects were calculated for each variable. Foot maximum vertical (VT) acceleration and amplitude, trunk-foot VT acceleration attenuation, and their variability were significantly smaller in OF than in YF. In contrast, trunk mediolateral (ML) acceleration amplitude, maximum VT acceleration, amplitude, and their variability were significantly larger in OF than in YF. Moreover, OF showed lower stability (i.e., higher LDE values) in ML acceleration, ML, and VT angular velocity of the trunk. Even though we measured healthy OF, these participants showed lower VT foot accelerations with higher VT trunk acceleration, lower trunk-foot VT acceleration attenuation, less gait stability, and more variability of the trunk, and hence, were more likely to fall. These findings suggest that instrumented gait measurements may help for early detection of changes or impairments in gait performance, even before this can be observed by clinical eye or gait speed.
Collapse
Affiliation(s)
- Yuge Zhang
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xinglong Zhou
- Sport Science College, Beijing Sport University, Beijing, China
| | - Mirjam Pijnappels
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sjoerd M. Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, Netherlands
- Biomechanics Laboratory, Fujian Medical University, Quanzhou, China
- *Correspondence: Sjoerd M. Bruijn
| |
Collapse
|