1
|
Budhbaware T, Rathored J, Shende S. Molecular methods in cancer diagnostics: a short review. Ann Med 2024; 56:2353893. [PMID: 38753424 PMCID: PMC11100444 DOI: 10.1080/07853890.2024.2353893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND One of the ailments with the greatest fatality rates in the 21st century is cancer. Globally, molecular methods are widely employed to treat cancer-related disorders, and the body of research on this subject is growing yearly. A thorough and critical summary of the data supporting molecular methods for illnesses linked to cancer is required. OBJECTIVE In order to guide clinical practice and future research, it is important to examine and summarize the systematic reviews (SRs) that evaluate the efficacy and safety of molecular methods for disorders associated to cancer. METHODS We developed a comprehensive search strategy to find relevant articles from electronic databases like PubMed, Google Scholar, Web of Science (WoS), or Scopus. We looked through the literature and determined which diagnostic methods in cancer genetics were particularly reliable. We used phrases like 'cancer genetics', genetic susceptibility, Hereditary cancer, cancer risk assessment, 'cancer diagnostic tools', cancer screening', biomarkers, and molecular diagnostics, reviews and meta-analyses evaluating the efficacy and safety of molecular therapies for cancer-related disorders. Research that only consider treatment modalities that don't necessitate genetic or molecular diagnostics fall under the exclusion criteria. RESULTS The results of this comprehensive review clearly demonstrate the transformative impact of molecular methods in the realm of cancer genetics.This review underscores how these technologies have empowered researchers and clinicians to identify and understand key genetic alterations that drive malignancy, ranging from point mutations to structural variations. Such insights are instrumental in pinpointing critical oncogenic drivers and potential therapeutic targets, thus opening the door for methods in precision medicine that can significantly improve patient outcomes. LIMITATION The search does not specify a timeframe for publication inclusion, it may have missed recent advancements or changes in the field's landscape of molecular methods for cancer. As a result, it may not have included the most recent developments in the field. CONCLUSION After conducting an in-depth study on the molecular methods in cancer genetics, it is evident that these cutting-edge technologies have revolutionized the field of oncology, providing researchers and clinicians with powerful tools to unravel the complexities of cancer at the genetic level. The integration of molecular methods techniques has not only enhanced our understanding of cancer etiology, progression, and treatment response but has also opened new avenues for personalized medicine and targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tanushree Budhbaware
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Jaishriram Rathored
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Sandesh Shende
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| |
Collapse
|
2
|
Deng Y, Yang K, Zhou G, Wang N, Liu C, Chen Z. Correlations of intestinal microorganisms with liver and immune functions of patients with human immunodeficiency virus and hepatitis B virus coinfection. Afr Health Sci 2023; 23:460-467. [PMID: 38357144 PMCID: PMC10862600 DOI: 10.4314/ahs.v23i3.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Objective Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection has threatened the survival of HIV-infected people. To explore the correlations of intestinal microorganisms with liver and immune functions of patients with HIV/HBV coinfection. Methods Eighty-six patients positive for HIV antibody and HBV surface antigen diagnosed from January 2018 to June 2020 were selected as HIV/HBV coinfection group. Another 86 patients positive for HBV surface antigen and 86 healthy people were selected as HBV infection and control groups, respectively. The correlations of intestinal flora with liver function, inflammatory indices and immune cells were explored through Pearson's analysis. Results Compared with control group, the proportions and numbers of T lymphocytes (CD3+), helper T lymphocytes (CD4+), cytotoxic T lymphocytes (CD8+), CD4+/CD8+ and natural killer (NK) cells decreased in HIV/HBV coinfection group (P<0.05). IL-2, IL-6, IL-17, ALT, AST, GGT, DBiL and TDBi levels were correlated negatively with Bifidobacterium, Lactobacillus and Bacteroides numbers, but positively with Enterobacter and Enterococcus numbers (P<0.05). IL-10 level and proportions of CD3+, CD4+, CD8+, CD4+/CD8+ and NK cells were correlated positively with Bifidobacterium, Lactobacillus and Bacteroides numbers, but negatively with Enterobacter and Enterococcus numbers (P<0.05). Conclusion HIV aggravates the liver damage and immuno-inflammatory response in HBV patients.
Collapse
Affiliation(s)
- Yong Deng
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| | - Ke Yang
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| | - Guoqiang Zhou
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| | - Ning Wang
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| | - Chun Liu
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| | - Zhong Chen
- Department of Acquired Immunodeficiency Syndrome, The First Hospital of Changsha, Changsha 410005, Hunan Province, China
| |
Collapse
|
3
|
Deng J, Yun J, Gu Y, Yan B, Yin B, Huang C. Evaluating the In Vitro and In Vivo Prebiotic Effects of Different Xylo-Oligosaccharides Obtained from Bamboo Shoots by Hydrothermal Pretreatment Combined with Endo-Xylanase Hydrolysis. Int J Mol Sci 2023; 24:13422. [PMID: 37686227 PMCID: PMC10488140 DOI: 10.3390/ijms241713422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Xylo-oligosaccharides (XOS) enriched with high fractions of X2-X3 are regarded as an effective prebiotic for regulating the intestinal microflora. In this study, the original XOS solution was obtained from bamboo shoots through hydrothermal pretreatment under optimized conditions. Subsequently, enzymatic hydrolysis with endo-xylanase was performed on the original XOS solution to enhance the abundance of the X2-X3 fractions. The results demonstrated that hydrothermal pretreatment yielded 21.24% of XOS in the hydrolysate solution, and subsequent enzymatic hydrolysis significantly increased the proportion of the X2-X3 fractions from 38.87% to 68.21%. Moreover, the XOS solutions with higher amounts of X2-X3 fractions exhibited superior performance in promoting the growth of probiotics such as Bifidobacterium adolescentis and Lactobacillus acidophilus in vitro, leading to increased production of short-chain fatty acids. In the in vivo colitis mouse model, XOS solutions with higher contents of X2-X3 fractions demonstrated enhanced efficacy against intestinal inflammation. Compared with the colitis mice (model group), the XOS solution with higher X2-X3 fractions (S1 group) could significantly increase the number of Streptomyces in the intestinal microflora, while the original XOS solution (S2 group) could significantly increase the number of Bacteroides in the intestinal microflora of colitis mice. In addition, the abundances of Alcaligenes and Pasteurella in the intestinal microflora of the S1 and S2 groups were much lower than in the model group. This effect was attributed to the ability of these XOS solutions to enhance species diversity, reversing the imbalance and disorder within the intestinal microflora. Overall, this work highlights the outstanding potential of XOS enriched with high contents of X2-X3 fractions as a regulator of the intestinal microbiota and as an anti-colitis agent.
Collapse
Affiliation(s)
- Junping Deng
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Yang Gu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| | - Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China;
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (J.D.); (Y.G.); (B.Y.)
| |
Collapse
|
4
|
Navarro Ledesma S, Hamed-Hamed D, González-Muñoz A, Pruimboom L. Effectiveness of Treatments That Alter Metabolomics in Cancer Patients-A Systematic Review. Cancers (Basel) 2023; 15:4297. [PMID: 37686573 PMCID: PMC10486463 DOI: 10.3390/cancers15174297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Cancer is the leading cause of death worldwide, with the most frequent being breast cancer in women, prostate cancer in men and colon cancer in both sexes. The use of metabolomics to find new biomarkers can provide knowledge about possible interventions based on the presence of oncometabolites in different cancer types. OBJECTIVES The primary purpose of this review is to analyze the characteristic metabolome of three of the most frequent cancer types. We further want to identify the existence and success rate of metabolomics-based intervention in patients suffering from those cancer types. Our conclusions are based on the analysis of the methodological quality of the studies. METHODS We searched for studies that investigated the metabolomic characteristics in patients suffering from breast cancer, prostate cancer or colon cancer in clinical trials. The data were analyzed, as well as the effects of specific interventions based on identified metabolomics and one or more oncometabolites. The used databases were PubMed, Virtual Health Library, Web of Science, EBSCO and Cochrane Library. Only nine studies met the selection criteria. Study bias was analyzed using the Cochrane risk of bias tool. This systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO: CRD42023401474). RESULTS Only nine studies about clinical trials were included in this review and show a moderate quality of evidence. Metabolomics-based interventions related with disease outcome were conflictive with no or small changes in the metabolic characteristics of the different cancer types. CONCLUSIONS This systematic review shows some interesting results related with metabolomics-based interventions and their effects on changes in certain cancer oncometabolites. The small number of studies we identified which fulfilled our inclusion criteria in this systematic review does not allow us to draw definitive conclusions. Nevertheless, some results can be considered as promising although further research is needed. That research must focus not only on the presence of possible oncometabolites but also on possible metabolomics-based interventions and their influence on the outcome in patients suffering from breast cancer, prostate cancer or colon cancer.
Collapse
Affiliation(s)
- Santiago Navarro Ledesma
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain; (D.H.-H.); (A.G.-M.)
- Department of Physiotherapy, University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, 52004 Melilla, Spain;
| | - Dina Hamed-Hamed
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain; (D.H.-H.); (A.G.-M.)
| | - Ana González-Muñoz
- Department of Physiotherapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Querol Street 5, 52004 Melilla, Spain; (D.H.-H.); (A.G.-M.)
| | - Leo Pruimboom
- Department of Physiotherapy, University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, 52004 Melilla, Spain;
| |
Collapse
|
5
|
Zwezerijnen-Jiwa FH, Sivov H, Paizs P, Zafeiropoulou K, Kinross J. A systematic review of microbiome-derived biomarkers for early colorectal cancer detection. Neoplasia 2022; 36:100868. [PMID: 36566591 PMCID: PMC9804137 DOI: 10.1016/j.neo.2022.100868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests a role of the gut microbiome in the development of colorectal cancer (CRC) and that it can serve as a biomarker for early diagnosis. This review aims to give an overview of the current status of published studies regarding the microbiome as a screening tool for early CRC detection. A literature search was conducted using PubMed and EMBASE in August 2022. Studies assessing the efficacy of microbiome-derived biomarkers based on noninvasive derived samples were included. Not relevant studies or studies not specifying the stage of CRC or grouping them together in the analysis were excluded. The risk of bias for screening tools was performed using the QUADAS-2 checklist. A total of 28 studies were included, ranging from 2 to 462 for CRC and 18 to 665 advanced adenoma patient inclusions, of which only two investigated the co-metabolome as biomarker. The diagnostic performance of faecal bacteria-derived biomarkers had an AUC ranging from 0.28-0.98 for precursor lesions such as advanced adenomas and 0.54-0.89 for early CRC. Diagnostic performance based on the co-metabolome showed an AUC ranging from 0.69 - 0.84 for precursor lesions and 0.65 - 0.93 for early CRC. All models improved when combined with established clinical early detection markers such as gFOBT. A high level of heterogeneity was seen in the number of inclusions and methodology used in the studies. The faecal and oral gut microbiome has the potential to complement existing CRC screening tools, however current evidence suggests that this is not yet ready for routine clinical use.
Collapse
Affiliation(s)
- Florine H. Zwezerijnen-Jiwa
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London W2 1NY, UK,Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centres, University of Amsterdam, 1105 BK Amsterdam, The Netherlands,Department of Gastroenterology, Amsterdam University Medical Centres, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hugo Sivov
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London W2 1NY, UK
| | - Petra Paizs
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London W2 1NY, UK
| | - Konstantina Zafeiropoulou
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centres, University of Amsterdam, 1105 BK Amsterdam, The Netherlands,Department of Paediatric Surgery, Emma Children's Hospital, Amsterdam University Medical Centres, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - James Kinross
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London W2 1NY, UK,Corresponding author at: Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, 10th Floor QEQMW, Praed Street, London, W2 1NY, UK
| |
Collapse
|
6
|
Shuwen H, Yangyanqiu W, Jian C, Boyang H, Gong C, Jing Z. Synergistic effect of sodium butyrate and oxaliplatin on colorectal cancer. Transl Oncol 2022; 27:101598. [PMID: 36512976 PMCID: PMC9763735 DOI: 10.1016/j.tranon.2022.101598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxaliplatin (OXA) is a chemotherapy agent commonly used in the treatment of colorectal cancer (CRC). Sodium butyrate (NaB) has an antitumor effect. METHODS In total, 30 patients in stage III who completed 8 cycles of chemotherapy regimens were recruited for this study. The patients were divided into good and bad groups based on the chemotherapy efficacy. Gas chromatography-mass spectrometry (GC/MS) was used to detect microbial metabolites in stool samples from CRC patients. Cell counting kit-8 (CCK-8), Annexin-V APC/7-AAD double staining, Transwell assays, scratch-wound assays, and EdU assays were used to detect cell proliferation, apoptosis, invasion and migration, respectively. Fluoroelectron microscopy was used to observe the cell structures. To verify the inhibitory effect of NaB and OXA at animal level, a subcutaneous transplanted tumor model was established. Finally, 16S sequencing technology was used to detect intestinal bacteria. GC-MS was used to detect metabolites in mouse stools. RESULTS NaB was a differential metabolite that affected the efficacy of OXA. NAB and oxaliplatin can synergically inhibit cell proliferation, migration and invasion, and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of oxaliplatin and sodium butyrate on tumor in mice. In addition, the intestinal microbe detection and microbial metabolite detection in fecal samples from mice showed significant differences between butyrate-producing bacteria and NaB. CONCLUSION NaB and OXA can synergistically inhibit the proliferation, invasion and metastasis of CRC cells and promote the apoptosis of CRC cells. NaB, as an OXA synergist, has the potential to become a new clinical adjuvant in CRC chemotherapy.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, PR China
| | - Wang Yangyanqiu
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, PR China
| | - Chu Jian
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Hu Boyang
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Chen Gong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Corresponding author at: No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
7
|
Meng Y, Lai YC, Grebogi C. The fundamental benefits of multiplexity in ecological networks. J R Soc Interface 2022; 19:20220438. [PMID: 36167085 PMCID: PMC9514891 DOI: 10.1098/rsif.2022.0438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
A tipping point presents perhaps the single most significant threat to an ecological system as it can lead to abrupt species extinction on a massive scale. Climate changes leading to the species decay parameter drifts can drive various ecological systems towards a tipping point. We investigate the tipping-point dynamics in multi-layer ecological networks supported by mutualism. We unveil a natural mechanism by which the occurrence of tipping points can be delayed by multiplexity that broadly describes the diversity of the species abundances, the complexity of the interspecific relationships, and the topology of linkages in ecological networks. For a double-layer system of pollinators and plants, coupling between the network layers occurs when there is dispersal of pollinator species. Multiplexity emerges as the dispersing species establish their presence in the destination layer and have a simultaneous presence in both. We demonstrate that the new mutualistic links induced by the dispersing species with the residence species have fundamental benefits to the well-being of the ecosystem in delaying the tipping point and facilitating species recovery. Articulating and implementing control mechanisms to induce multiplexity can thus help sustain certain types of ecosystems that are in danger of extinction as the result of environmental changes.
Collapse
Affiliation(s)
- Yu Meng
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
| |
Collapse
|
8
|
Meta-Analysis of Altered Gut Microbiota Reveals Microbial and Metabolic Biomarkers for Colorectal Cancer. Microbiol Spectr 2022; 10:e0001322. [PMID: 35766483 PMCID: PMC9431300 DOI: 10.1128/spectrum.00013-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. The dysbiotic gut microbiota and its metabolite secretions play a significant role in CRC development and progression. In this study, we identified microbial and metabolic biomarkers applicable to CRC using a meta-analysis of metagenomic datasets from diverse geographical regions. We used LEfSe, random forest (RF), and co-occurrence network methods to identify microbial biomarkers. Geographic dataset-specific markers were identified and evaluated using area under the ROC curve (AUC) scores and random effect size. Co-occurrence networks analysis showed a reduction in the overall microbial associations and the presence of oral pathogenic microbial clusters in CRC networks. Analysis of predicted metabolites from CRC datasets showed the enrichment of amino acids, cadaverine, and creatine in CRC, which were positively correlated with CRC-associated microbes (Peptostreptococcus stomatis, Gemella morbillorum, Bacteroides fragilis, Parvimonas spp., Fusobacterium nucleatum, Solobacterium moorei, and Clostridium symbiosum), and negatively correlated with control-associated microbes. Conversely, butyrate, nicotinamide, choline, tryptophan, and 2-hydroxybutanoic acid showed positive correlations with control-associated microbes (P < 0.05). Overall, our study identified a set of global CRC biomarkers that are reproducible across geographic regions. We also reported significant differential metabolites and microbe-metabolite interactions associated with CRC. This study provided significant insights for further investigations leading to the development of noninvasive CRC diagnostic tools and therapeutic interventions. IMPORTANCE Several studies showed associations between gut dysbiosis and CRC. Yet, the results are not conclusive due to cohort-specific associations that are influenced by genomic, dietary, and environmental stimuli and associated reproducibility issues with various analysis approaches. Emerging evidence suggests the role of microbial metabolites in modulating host inflammation and DNA damage in CRC. However, the experimental validations have been hindered by cost, resources, and cumbersome technical expertise required for metabolomic investigations. In this study, we performed a meta-analysis of CRC microbiota data from diverse geographical regions using multiple methods to achieve reproducible results. We used a computational approach to predict the metabolomic profiles using existing CRC metagenomic datasets. We identified a reliable set of CRC-specific biomarkers from this analysis, including microbial and metabolite markers. In addition, we revealed significant microbe-metabolite associations through correlation analysis and microbial gene families associated with dysregulated metabolic pathways in CRC, which are essential in understanding the vastly sporadic nature of CRC development and progression.
Collapse
|
9
|
The OmpA of commensal Escherichia coli of CRC patients affects apoptosis of the HCT116 colon cancer cell line. BMC Microbiol 2022; 22:139. [PMID: 35590263 PMCID: PMC9118694 DOI: 10.1186/s12866-022-02540-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer ranks third globally among all types of cancers. Dysbiosis of the gut microbiota of people with CRC is one of the effective agents in the tumorigenesis and metastasis in this type of cancer. The population of Escherichia coli strains, a component of gut microbiota, is increased in the gut of people with CRC compared with healthy people. So, E.coli strains isolated from these patients may have a role in tumorigenesis. Because the most isolated strains belong to the B2 phylogenuetic group, there seems to be a linkage between the bacterium components and malignancy. MATERIAL AND METHODS In this study, the proteomic comparison between isolated Ecoli from CRC patients and healthy people was assayed. The isolated spot was studied by Two-dimensional gel electrophoresis (2DE) and Liquid chromatography-mass spectrometry (LC-MS). The results showed that the expression of Outer membrane protein A (OmpA) protein increased in the commensal E.coli B2 phylogenetic group isolated from CRC patients. Additionally, we analyzed the effect of the OmpA protein on the expression of the four genes related to apoptosis in the HCT116 colon cancer cell line. RESULTS This study identified that OmpA protein was overexpressed in the commensal E.coli B2 phylogenetic group isolated from CRC patients compared to the E.coli from the control group. This protein significantly decreased the expression of Bax and Bak, pro-apoptotic genes, as well as the expression of P53 in the HCT116 Cell Line, P < 0.0001. LC-MS and protein bioinformatics results confirmed that this protein is outer membrane protein A, which can bind to nucleic acid and some of the organelle proteins on the eukaryotic cell surface. CONCLUSIONS According to our invitro and insilico investigations, OmpA of gut E.coli strains that belong to the B2 phylogenetic group can affect the eukaryotic cell cycle.
Collapse
|
10
|
Han SZ, Wang R, Wen KM. Delayed diagnosis of ascending colon mucinous adenocarcinoma with local abscess as primary manifestation: Report of three cases. World J Clin Cases 2021; 9:7901-7908. [PMID: 34621844 PMCID: PMC8462249 DOI: 10.12998/wjcc.v9.i26.7901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal mucinous adenocarcinoma is a distinct subtype of colorectal adenocarcinoma that is not sensitive to chemotherapy and radiotherapy, and its prognosis is worse than that of nonmucinous adenocarcinoma. Early diagnosis and aggressive surgical treatment may be the key to improving the prognosis of patients. Ascending colon mucinous adenocarcinoma with the primary manifestation of a local abscess caused by non-intestinal perforation has never been reported. Moreover, since the lumen of the ascending colon is large, and early stage ascending colon cancer lacks typical clinical manifestations, the diagnosis may be delayed easily. We herein report three cases of delayed diagnosis of colorectal mucinous adenocarcinoma.
CASE SUMMARY We present three patients (two females and one male) with mucinous ascending colon mucinous adenocarcinoma with the primary manifestation of a local abscess (the right area of the lumbar spine, right groin, and lower right abdomen) caused by non-intestinal perforation. At the initial clinical visit, the common causes of those abscesses, including spinal tuberculosis and urinary tract infection, were excluded. The treatment of the abscess was through an incision and drainage. However, the source of the abscess was not made clear, which led to an abscess recurrence and a delayed diagnosis of colorectal mucinous adenocarcinoma. After the patients were referred to our hospital, a definitive diagnosis of ascending colon mucinous adenocarcinoma was made with the help of tumor markers and colonoscopic findings. Because of the delayed diagnosis of the disease, two patients (case 1 and case 2) missed the chance of surgery due to disease progression and died in a short follow-up period. Only case 3 underwent radical surgery for the tumor in the right colon and partial abdominal wall resection and achieved a better prognosis.
CONCLUSION Abscesses in the right area of the lumbar spine, right groin, or right lower quadrant caused by non-intestinal perforation as the primary clinical manifestation of ascending colon mucinous adenocarcinoma are extremely rare. Mucinous adenocarcinoma of the ascending colon may be one of the causes of such abscesses. Performing colonoscopy as soon as possible is of great significance in the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Shang-Zhi Han
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Rong Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Kun-Ming Wen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
11
|
Ren J, Guo B, Sui H, Chen J, Zhang L, Lv C, Li B. The effects of aerobic exercise on the intestinal tumors and flora of the Apc Min/+ mouse. Clin Transl Oncol 2021; 24:305-318. [PMID: 34436759 DOI: 10.1007/s12094-021-02689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Intestinal tumor is one of the most common tumors that seriously threaten the health of residents all over the world. Studies suggest that the imbalance of intestinal flora is associated with tumorgenesis; meanwhile, long-term regular aerobic exercise can improve the occurrence and development of tumors. However, moderate aerobic exercise affecting the development of intestinal tumors and their related flora has not been explored. Thus, the purpose of our study is to explore the effects of aerobic exercise on intestinal tumor growth and flora changes in ApcMin/+ mice, and try to answer whether there is a correlation between them after exercise intervention. METHODS In this study, 18 required ApcMin/+ mice were randomly divided into Model group (n = 6), Exercise group (n = 6), and Aspirin group (positive control, n = 6), while C57BL/6 J wild-type mice were used as the blank control group. Each group is given corresponding intervention. Weight monitoring, tumor counts, hematoxylin-eosin staining, TdT-mediated dUTP nick-end labeling (TUNEL) fluorescence assay, immunohistochemistry (IHC), fecal sampling and grouping, and bacterial 16S rDNA gene analysis were completed after 12 weeks' intervention for each group of mice. RESULTS As a result, we were able to show significant improvements in mice' body weight changing rates (Exercise group 8.6% higher than Model control group), tumor numbers (Exercise group 4.33 ± 0.94 vs. Model control group 7.33 ± 2.49, Then put the slides into xylenewith tumor inhibition rate 40.93%), tumor pathological staging (Exercise group mainly low-grade tumorous adenomas vs. Model group mainly high-grade adenomas), and TUNEL staining (Exercise group 8.59% higher positive rate of apoptotic cells in tumors than Model group). The 16s rRNA sequencing analysis results showed that aerobic exercise could regulate the abundance of some genus (16/149, P < 0.01), and the number of intestinal tumors correlates with changes in the abundance of some bacteria in the intestinal flora (positive correlation with probiotics abundance and negative correlation with conditioned pathogens). DISCUSSION Changes in flora abundance may be one of the reasons for aerobic exercise to reduce the number of intestinal tumors, probably mediated by cell apoptosis. Future studies should focus on the potential mechanism of aerobic exercise in preventing intestinal tumorgenesis, especially the molecular mechanism through intestinal flora. CONCLUSION Aerobic exercise has a preventive effect on intestinal tumors in ApcMin/+ mice, and can regulate the abundance of intestinal flora.
Collapse
Affiliation(s)
- J Ren
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - B Guo
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - H Sui
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201803, China
| | - J Chen
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - L Zhang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Integrated Chinese and Western Medicine, Henan Provincial Cancer Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, China
| | - C Lv
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China
| | - B Li
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
12
|
Rodríguez-Enríquez S, Robledo-Cadena DX, Gallardo-Pérez JC, Pacheco-Velázquez SC, Vázquez C, Saavedra E, Vargas-Navarro JL, Blanco-Carpintero BA, Marín-Hernández Á, Jasso-Chávez R, Encalada R, Ruiz-Godoy L, Aguilar-Ponce JL, Moreno-Sánchez R. Acetate Promotes a Differential Energy Metabolic Response in Human HCT 116 and COLO 205 Colon Cancer Cells Impacting Cancer Cell Growth and Invasiveness. Front Oncol 2021; 11:697408. [PMID: 34414111 PMCID: PMC8370060 DOI: 10.3389/fonc.2021.697408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Under dysbiosis, a gut metabolic disorder, short-chain carboxylic acids (SCCAs) are secreted to the lumen, affecting colorectal cancer (CRC) development. Butyrate and propionate act as CRC growth inhibitors, but they might also serve as carbon source. In turn, the roles of acetate as metabolic fuel and protein acetylation promoter have not been clearly elucidated. To assess whether acetate favors CRC growth through active mitochondrial catabolism, a systematic study evaluating acetate thiokinase (AcK), energy metabolism, cell proliferation, and invasiveness was performed in two CRC cell lines incubated with physiological SCCAs concentrations. In COLO 205, acetate (+glucose) increased the cell density (50%), mitochondrial protein content (3–10 times), 2-OGDH acetylation, and oxidative phosphorylation (OxPhos) flux (36%), whereas glycolysis remained unchanged vs. glucose-cultured cells; the acetate-induced OxPhos activation correlated with a high AcK activity, content, and acetylation (1.5–6-fold). In contrast, acetate showed no effect on HCT116 cell growth, OxPhos, AcK activity, protein content, and acetylation. However, a substantial increment in the HIF-1α content, HIF-1α-glycolytic protein targets (1–2.3 times), and glycolytic flux (64%) was observed. Butyrate and propionate decreased the growth of both CRC cells by impairing OxPhos flux through mitophagy and mitochondrial fragmentation activation. It is described, for the first time, the role of acetate as metabolic fuel for ATP supply in CRC COLO 205 cells to sustain proliferation, aside from its well-known role as protein epigenetic regulator. The level of AcK determined in COLO 205 cells was similar to that found in human CRC biopsies, showing its potential role as metabolic marker.
Collapse
Affiliation(s)
| | | | | | | | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | | | | | | | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México, Mexico
| | - Luz Ruiz-Godoy
- Banco de Tumores, Instituto Nacional de Cancerología, México, Mexico
| | | | | |
Collapse
|
13
|
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML, Santerre A. Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis. Probiotics Antimicrob Proteins 2021; 12:1012-1024. [PMID: 31797281 DOI: 10.1007/s12602-019-09611-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.
Collapse
Affiliation(s)
- Josefina Casas-Solís
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - María Del Rosario Huizar-López
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México
| | - Cesar Antonio Irecta-Nájera
- Departamento de Salud, El Colegio de La Frontera Sur, Carretera a Reforma Km15.5 s/n, Ra ElGuieno 2ª Sección, 86280, Villahermosa, Tabasco, México
| | - María Luisa Pita-López
- Departamento de Ciencias Básicas para la Salud, CIBIMEC, Centro Universitario del Sur, Universidad de Guadalajara, Av. Enrique Arreola Silva 883, CP4900, Cd. Guzmán, Guadalajara, Jalisco, México
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Carretera Guadalajara-Nogales Km 15.5, Las Agujas, CP, 45110, Zapopan, Jalisco, México.
| |
Collapse
|
14
|
Jin JQ, Jia XN, Xuan JY. Changes of intestinal flora and miR-10a expression after radical resection of colorectal cancer: Effect of microecological enteral nutrition intervention. Shijie Huaren Xiaohua Zazhi 2021; 29:356-365. [DOI: 10.11569/wcjd.v29.i7.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radical resection is an important method for the treatment of rectal cancer, but the imbalance of intestinal flora and changes in gene expression caused by surgery are not conducive to the improvement of prognosis. It is of great value to explore the changes of intestinal flora and related gene expression after surgery for the formulation of intervention measures.
AIM To investigate the changes in intestinal flora and microRNA-10a (miR-10a) expression after radical resection of colorectal cancer, and to analyze the effect of microecological enteral nutrition intervention.
METHODS From July 2017 to June 2020, 107 patients with colorectal cancer undergoing radical resection at our hospital were selected as research subjects. The intestinal flora and miR-10a expression changes of patients with different intestinal flora were compared, and the relationship between the intestinal flora, miR-10a expression, and dysbacteriosis was analyzed. Microecological enteral nutrition intervention was carried out for patients with intestinal flora disorders, and the intestinal flora and miR-10a expression of patients before and after the intervention were compared. Clinical data, intestinal flora, and miR-10a expression of patients with different curative effects were compared. Factors affecting the efficacy of microecological enteral nutrition intervention were analyzed, as well as the value of intestinal flora and miR-10a expression in evaluation of efficacy of microecological enteral nutrition intervention. The correlation between the intestinal flora and the expression of miR-10a in patients with dysbacteriosis was analyzed.
RESULTS The numbers of colonies of Lactobacillus, Bifidobacterium, and Eubacterium, and miR-10a expression were higher in patients with normal flora after radical resection of colorectal cancer than those in patients with dysbacteriosis degrees Ⅰ and Ⅱ, and in patients with dysbacteriosis degree Ⅰ than in those with dysbacteriosis degree Ⅱ. The number of Enterococcus was lower in patients with normal flora after radical resection of colorectal cancer than in those with dysbacteriosis degrees Ⅰ and Ⅱ, and in patients with dysbacteriosis degree Ⅰ than in those with dysbacteriosis degree Ⅱ (P < 0.05). As the numbers of Lactobacillus, Bifidobacterium, and Eubacterium, and the expression of miR-10a decreased, and the number of Enterococcus increased, the risk of dysbacteriosis in patients after radical resection of colorectal cancer increased (P < 0.05). The numbers of Lactobacillus, Bifidobacterium, and Eubacterium and miR-10a expression were higher and the number of Enterococcus was lower in patients after microecological enteral nutrition intervention than in patients before intervention (P < 0.05). Age, Duke stage, numbers of Lactobacillus, Bifidobacterium, Enterococcus and Eubacterium after intervention, and miR-10a expression were all significantly correlated with the efficacy of microecological enteral nutrition intervention (P < 0.05). After intervention, the areas under the curves of the intestinal flora and miR-10a expression in evaluating the efficacy of microecological enteral nutrition intervention were both > 0.7.
CONCLUSION The intestinal flora and miR-10a expression changes after radical resection of colorectal cancer are significantly related to the occurrence of dysbacteriosis. Microecological enteral nutrition intervention can effectively regulate the intestinal flora and miR-10a expression, and the intestinal flora and miR-10a expression can be used as indicators to evaluate the intervention efficacy.
Collapse
Affiliation(s)
- Jia-Qi Jin
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xin-Neng Jia
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Jun-Yi Xuan
- Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
15
|
Zhang CY, Tan ZJ. Preliminary study on theory of spleen injury caused by exogenous cold and dampness based on intestinal microecology. Shijie Huaren Xiaohua Zazhi 2021; 29:325-331. [DOI: 10.11569/wcjd.v29.i7.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exogenous cold and dampness is most likely to damage spleen Yang, which affects the spleen's function of governing transportation and dispersing essence. Human intestinal flora is widely involved in the regulation of gastrointestinal digestive functions. Therefore, based on the general understanding of the correlation between intestinal microecology and the spleen in modern research, this paper discusses the response mechanism of intestinal microflora to random exposure to cold and dampness environment in the process of gastrointestinal digestive dysfunction, and suggests that intestinal microecology imbalance may be one of the mechanisms of spleen injury caused by exogenous cold and dampness in traditional Chinese medicine.
Collapse
Affiliation(s)
- Chen-Yang Zhang
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
16
|
Choudhry H. The Microbiome and Its Implications in Cancer Immunotherapy. Molecules 2021; 26:E206. [PMID: 33401586 PMCID: PMC7795182 DOI: 10.3390/molecules26010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is responsible for ~18 million deaths globally each year, representing a major cause of death. Several types of therapy strategies such as radiotherapy, chemotherapy and more recently immunotherapy, have been implemented in treating various types of cancer. Microbes have recently been found to be both directly and indirectly involved in cancer progression and regulation, and studies have provided novel and clear insights into the microbiome-mediated emergence of cancers. Scientists around the globe are striving hard to identify and characterize these microbes and the underlying mechanisms by which they promote or suppress various kinds of cancer. Microbes may influence immunotherapy by blocking various cell cycle checkpoints and the production of certain metabolites. Hence, there is an urgent need to better understand the role of these microbes in the promotion and suppression of cancer. The identification of microbes may help in the development of future diagnostic tools to cure cancers possibly associated with the microbiome. This review mainly focuses on various microbes and their association with different types of cancer, responses to immunotherapeutic modulation, physiological responses, and prebiotic and postbiotic effects.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Sciences, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Sui X, Chen Y, Liu B, Li L, Huang X, Wang M, Wang G, Gao X, Zhang L, Bao X, Yang D, Wang X, Zhong C. The relationship between KRAS gene mutation and intestinal flora in tumor tissues of colorectal cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1085. [PMID: 33145304 PMCID: PMC7575961 DOI: 10.21037/atm-20-5622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer is among the most prominent malignant tumors endangering human health, with affected populations exhibiting an increasingly younger trend. The Kirsten ras (KRAS) gene acts as a crucial regulator in this disease and influences multiple signaling pathways. In the present study, the KRAS gene mutation-induced alteration of intestinal flora in colorectal cancer patients was explored, and the intestinal microbes that may be affected by the KRAS gene were examined to provide new insights into the diagnosis and treatment of colorectal cancer. Methods Deoxyribonucleic acid (DNA) was extracted from 177 colorectal cancer patients in our hospital. The mutation of the KRAS gene was subsequently detected using real-time fluorescence quantitative polymerase chain reaction (qPCR), and survival analysis was performed. Moreover, genomic DNA was extracted from the fecal microbes in 30 of these patients, and the differences in the intestinal flora between mutation and non-mutation groups were evaluated using linear discriminant analysis (LDA) Effect size (LEfSe) analysis. Results KRAS gene mutation substantially affected the distant metastasis of colorectal cancer, and the survival prognosis in the non-mutation group was significantly superior compared to the mutation group. The mutation group had a notably higher prevalence of microbes including Roseburia, Parabacteroides, Metascardovia, Staphylococcus, Staphylococcaceae, and Bacillales than the non-mutation group. The presence of microbes in the non-mutation group, such as Clostridiales, Bacteroidetes, Lachnospiraceae, Coprococcus, and Ruminococcaceae was markedly higher than in the mutation group. Firmicutes were negatively correlated with the presence of Actinomyces and Bacteroidetes, while Bacteroidetes were positively associated with the level of Actinomyces. Conclusions In colorectal cancer, KRAS gene mutation can remarkably affect the survival prognosis and change the composition and abundance of intestinal flora, such as Roseburia, Parabacteroides, Metascardovia, Staphylococcus, and Bacillales, thereby influencing tumor development.
Collapse
Affiliation(s)
- Xinke Sui
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yan Chen
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Baojun Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Lianyong Li
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xin Huang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Min Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Guodong Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xiaopei Gao
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Lu Zhang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Xinwei Bao
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Dengfeng Yang
- Laboratory department, Mian County Hospital, Mian, China
| | - Xiaoying Wang
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Changqing Zhong
- Department of Gastroenterology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
18
|
Wang P, Ding S, Sun L, Feng Y, Guo K, Zhu Y, Huang D, Ruan S. Characteristics and differences of gut microbiota in patients with different Traditional Chinese Medicine Syndromes of Colorectal Cancer and normal population. J Cancer 2020; 11:7357-7367. [PMID: 33193900 PMCID: PMC7646174 DOI: 10.7150/jca.50318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is considered to be closely associated with alteration of intestinal microorganisms. The purpose of present study was to investigate the distribution of gut microbiota in the distinction of microbiota dysbiosis between two disease syndromes called Zheng-Qi-Kui-Xu(ZQKX) and Xie-Du-Yong-Sheng (XDYS). First, From February 2019 to June 2019, CRC patients presenting to the oncology department of Zhejiang Province Hospital of TCM who met the established inclusion and exclusion criteria were enrolled in this prospective study. After fresh stool specimens of healthy volunteers and CRC patients with ZQKX or XDYS syndorme were collected, 16S rRNA gene amplification and sequencing could be used to identify the diversity and abundance of gut microbiota among groups. The results demonstrated that the composition of the microbiota in general control group was superior to those in experimental groups. At the phylum level, a significantly increased abundance of Bacteroides was observed in healthy volunteers. At the class level, Erysipelothrix decreased while Lactobacillaceae showed increased abundance in the ZQKX group compared to healthy controls. At the family level, Prevotella Shan and Collins decreased while Streptococcus significantly increased in patients with XDYS syndrome compared to healthy subjects. Five differential taxa were identified between ZQKX and XDYS syndromes. We suggest that the gut microbiota contributes to the distinction between the two TCM syndromes of CRC, which can be used as a biological basis of TCM syndrome differentiation treatment in CRC.
Collapse
Affiliation(s)
- Peipei Wang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Shuning Ding
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Ying Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, Z.J. China
| | - Dawei Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Z.J. China
| |
Collapse
|
19
|
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in Research on Colorectal Cancer-Related Microorganisms and Metabolites. Cancer Manag Res 2020; 12:8703-8720. [PMID: 33061569 PMCID: PMC7518784 DOI: 10.2147/cmar.s268943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora is an important component in the human body, which have been reported to be involved in the occurrence and development of colorectal cancer (CRC). Indeed, changes in the intestinal flora in CRC patients compared to those in control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. In this review, we summarize the current knowledge on the potential links between the intestinal microbiota and CRC. We illustrated the mechanisms by which intestinal flora imbalance affects CRC, mainly focusing on inflammation, microbial metabolites, and specific bacteria species. In addition, we discuss how a diet exhibits a strong impact on microbial composition and provides risks for developing CRC. Finally, we describe the potential future directions that are based on intestinal microbiota manipulation for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou 313000, People's Republic of China
| | - Yinhang Wu
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
20
|
Jing Z, Xi Y, Yin J, Shuwen H. Biological roles of piRNAs in colorectal cancer. Gene 2020; 769:145063. [PMID: 32827685 DOI: 10.1016/j.gene.2020.145063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and a major cause of cancer-related deaths. Numerous studies have suggested that piwi-interacting RNAs (piRNAs), a new type of non-coding RNA (ncRNA), are closely related to the occurrence and development of cancer. piRNAs have been shown to regulate the occurrence of CRC by modulating multiple molecular signaling pathways. Here, the roles of piRNAs in CRC were reviewed to provide evidence for their potential as molecular targets for CRC.
Collapse
Affiliation(s)
- Zhuang Jing
- Graduate School of Nursing, Huzhou University, Zhejiang, No. 1 Bachelor Road, Huzhou, Zhejiang Province 313000, PR China
| | - Yang Xi
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Jin Yin
- Department of Laboratory Medicine, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China
| | - Han Shuwen
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, 198 Hongqi Rd, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
21
|
Chen Y, Yang Y, Gu J. Clinical Implications of the Associations Between Intestinal Microbiome and Colorectal Cancer Progression. Cancer Manag Res 2020; 12:4117-4128. [PMID: 32606919 PMCID: PMC7295108 DOI: 10.2147/cmar.s240108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal microbiome influences host immunity and several diseases, including cancer, in their areas of colonization. Microbial dysbiosis and over-colonization of specific microbes within the colorectal mucosa can impact the progress of carcinogenesis. Investigations initially focused on the mechanisms by which the intestinal microbiome initiates or promotes the development of colorectal cancer, including DNA damage, induction of chromosomal instability, and regulation of host immune responses. Some studies on the clinicopathological features have reported that specific strains present at high abundance are associated with advanced stage and positive lymph nodes in colorectal cancer. In this context, we reviewed the relationship between the intestinal microbiome and the clinical features (patient age, disease staging, prognosis, etc.) of patients with colorectal cancer, and evaluated the potential pathogenesis caused by the intestinal microbiome in disease progress. This article assessed whether changes in distinct species or strains occur during the period of cancer advancement. Overall, age grouping does not bring about significant differences in the constitution of microbiome. The disease stages show their distinct distribution in some species and strains. Oncogenic species are generally enriched in patients with poor prognosis, including low infiltration of CD3+ T cells, poor differentiation, widespread invasion, high microsatellite instability, CpG island methylator phenotype, BRAF mutation, short overall survival, and disease-free survival. The implications of those changes we discussed may assist in comprehensive understanding of the tumorigenesis of colorectal cancer from a microbiological perspective, finding potential biomarkers for colorectal cancer.
Collapse
Affiliation(s)
- Yongkang Chen
- Department of Gastrointestinal Surgery III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Yong Yang
- Department of Gastrointestinal Surgery III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Jin Gu
- Department of Gastrointestinal Surgery III, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China.,Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing 100144, People's Republic of China.,Peking-Tsinghua Center for Life Science, Tsinghua University, Beijing 100142, People's Republic of China
| |
Collapse
|
22
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
23
|
Clos-Garcia M, Garcia K, Alonso C, Iruarrizaga-Lejarreta M, D’Amato M, Crespo A, Iglesias A, Cubiella J, Bujanda L, Falcón-Pérez JM. Integrative Analysis of Fecal Metagenomics and Metabolomics in Colorectal Cancer. Cancers (Basel) 2020; 12:E1142. [PMID: 32370168 PMCID: PMC7281174 DOI: 10.3390/cancers12051142] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Although colorectal cancer (CRC) is the second leading cause of death in developed countries, current diagnostic tests for early disease stages are suboptimal. We have performed a combination of UHPLC-MS metabolomics and 16S microbiome analyses on 224 feces samples in order to identify early biomarkers for both advanced adenomas (AD) and CRC. We report differences in fecal levels of cholesteryl esters and sphingolipids in CRC. We identified Fusobacterium, Parvimonas and Staphylococcus to be increased in CRC patients and Lachnospiraceae family to be reduced. We finally described Adlercreutzia to be more abundant in AD patients' feces. Integration of metabolomics and microbiome data revealed tight interactions between bacteria and host and performed better than FOB test for CRC diagnosis. This study identifies potential early biomarkers that outperform current diagnostic tools and frame them into the stablished gut microbiota role in CRC pathogenesis.
Collapse
Affiliation(s)
- Marc Clos-Garcia
- Exosomes Laboratory, CIC bioGUNE, 48160 Derio, Spain;
- Biodonostia, Grupo de Enfermedades Gastrointestinales, 20014 San Sebastian, Spain;
| | - Koldo Garcia
- Biodonostia, Grupo de Genética Gastrointestinal, 20014 San Sebastian, Spain; (K.G.); (M.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, Derio, 48160 Bizkaia, Spain; (C.A.); (M.I.-L.)
| | | | - Mauro D’Amato
- Biodonostia, Grupo de Genética Gastrointestinal, 20014 San Sebastian, Spain; (K.G.); (M.D.)
- IKERBASQUE, Basque Foundation for Sciences, 48013 Bilbao, Spain
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Anais Crespo
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitario Galicia Sur, 32005 Ourense, Spain; (A.C.); (A.I.)
| | - Agueda Iglesias
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitario Galicia Sur, 32005 Ourense, Spain; (A.C.); (A.I.)
| | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Department of Gastroenterology, Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Sanitario Galicia Sur, 32005 Ourense, Spain; (A.C.); (A.I.)
| | - Luis Bujanda
- Biodonostia, Grupo de Enfermedades Gastrointestinales, 20014 San Sebastian, Spain;
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- IKERBASQUE, Basque Foundation for Sciences, 48013 Bilbao, Spain
- Metabolomics Platform, CIC bioGUNE, 48160 Derio, Spain
| |
Collapse
|
24
|
Han S, Wu W, Da M, Xu J, Zhuang J, Zhang L, Zhang X, Yang X. Adequate Lymph Node Assessments and Investigation of Gut Microorganisms and Microbial Metabolites in Colorectal Cancer. Onco Targets Ther 2020; 13:1893-1906. [PMID: 32184624 PMCID: PMC7061441 DOI: 10.2147/ott.s242017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose To analyze the lymph node metastasis status and prognosis in CRCs and to investigate the gut microorganisms and microbial metabolites at different lymph node stages. Methods The Surveillance, Epidemiology, and End Results (SEER) database and STAT software were used to analyze the clinical features and lymph node metastasis. Bacterial 16S V3-V4 and fungal ITS V3-V4 ribosomal RNA genes were sequenced in 53 stool samples and gas chromatography/mass spectrometry (GS/MS) was performed to detect the microbial metabolites in 48 stool samples from CRC patients. Results A higher number of lymph node metastases predicted a poor prognosis. Inadequate evaluation of lymph nodes affects the accuracy of prognostic assessments. We constructed a nomogram model for the assessment of prognostic factors. There were multiple characteristic bacteria identified, including Akkermansia, Megamonas, Dialister, etc., and fungi, including Penicillium, Filobasidium, Debaryomyces, etc. A total of 27 characteristic microbial metabolites in different lymph node metastasis status were also identified. Conclusion Gut microorganisms and microbial metabolites may provide reference and guidance for the adequate lymph node assessments (ALNA) in CRC.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Central Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Jiamin Xu
- Graduate School of Nursing, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Longqi Zhang
- Department of Infectious Disease, Huzhou Central Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Xiaoxiang Zhang
- Department of Clinical Examination, Huzhou Central Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Central Hospital, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Peng M, Lee SH, Rahaman SO, Biswas D. Dietary probiotic and metabolites improve intestinal homeostasis and prevent colorectal cancer. Food Funct 2020; 11:10724-10735. [DOI: 10.1039/d0fo02652b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolites from Lactobacillus casei display substantial antioxidant and anti-inflammatory activities, inhibit colorectal cancer cell proliferation and growth, and modulate gut microfloral composition, specifically reducing sulfidogenic bacteria.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| | - Seong-Ho Lee
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science
- University of Maryland
- College Park
- USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences
- University of Maryland
- College Park
- USA
- Biological Sciences Program
| |
Collapse
|
26
|
Leystra AA, Clapper ML. Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer. Genes (Basel) 2019; 10:genes10110900. [PMID: 31703321 PMCID: PMC6895921 DOI: 10.3390/genes10110900] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Mouse models are a valuable resource for use throughout the development and testing of new therapeutic strategies for CRC. Tumorigenesis and response to therapy in humans and mouse models alike are influenced by the microbial communities that colonize the gut. Differences in the composition of the gut microbiota can confound experimental findings and reduce the replicability and translatability of the resulting data. Despite this, the contribution of resident microbiota to preclinical tumor models is often underappreciated. This review does the following: (1) summarizes evidence that the gut microbiota influence CRC disease phenotypes; (2) outlines factors that can influence the composition of the gut microbiota; and (3) provides strategies that can be incorporated into the experimental design, to account for the influence of the microbiota on intestinal phenotypes in mouse models of CRC. Through careful experimental design and documentation, mouse models can continue to rapidly advance efforts to prevent and treat colon cancer.
Collapse
|
27
|
Xi Y, Yuefen P, Wei W, Quan Q, Jing Z, Jiamin X, Shuwen H. Analysis of prognosis, genome, microbiome, and microbial metabolome in different sites of colorectal cancer. J Transl Med 2019; 17:353. [PMID: 31665031 PMCID: PMC6819376 DOI: 10.1186/s12967-019-2102-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The colorectum includes ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Different sites of colorectal cancer (CRC) are different in many aspects, including clinical symptoms, biological behaviour, and prognosis. PURPOSE This study aimed to analyse prognosis, genes, bacteria, fungi, and microbial metabolome in different sites of CRC. METHODS The Surveillance, Epidemiology, and End Results (SEER) database and STAT were used to statistically describe and analyse the prognosis in different sites of CRC. RNA sequences of CRC from Broad Institute's GDAC Firehose were re-annotated and reanalysed based on different sites using weighted gene co-expression network analysis (WGCNA). The Kaplan-Meier method was used to analyse the prognosis and Cytoscape was used to construct a drug-target network based on DGIdb databases. Bacterial 16S V3-V4 and fungal ITS V3-V4 ribosomal RNA genes of stool samples were sequenced. Gas chromatography/mass spectrometry (GS/MS) was performed to detect the microbial metabolites in stool samples. Bioinformatics analysis was performed to compare distinct gut microorganisms and microbial metabolites between rectal and sigmoid cancers. RESULTS The prognosis in CRC with different sites is significantly different. The closer to the anus predicted longer survival time. The difference between genes and co-expression pairs in CRC with different sites were constructed. The relative abundance of 112 mRNAs and 26 lncRNAs correlated with the sites of CRC were listed. Nine differentially expressed genes at different sites of CRC were correlated with prognosis. A drug-gene interaction network contained 227 drug-gene pairs were built. The relative abundance of gut bacteria and gut fungus, and the content of microbe-related metabolites were statistically different between rectal and sigmoid cancers. CONCLUSIONS There are many differences in prognosis, genome, drug targets, gut microbiome, and microbial metabolome in different colorectal cancer sites. These findings may improve our understanding of the role of the CRC sites in personalized and precision medicine.
Collapse
Affiliation(s)
- Yang Xi
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, 198 Hongqi Rd, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Pan Yuefen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, 198 Hongqi Rd, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Wu Wei
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, 198 Hongqi Rd, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Qi Quan
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, 198 Hongqi Rd, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Zhuang Jing
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xu Jiamin
- Graduate School of Nursing, Huzhou University, No. 1 Bachelor Road, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Han Shuwen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, 198 Hongqi Rd, Huzhou, 313000, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Shuwen H, Miao D, Quan Q, Wei W, Zhongshan Z, Chun Z, Xi Y. Protective effect of the "food-microorganism-SCFAs" axis on colorectal cancer: from basic research to practical application. J Cancer Res Clin Oncol 2019; 145:2169-2197. [PMID: 31401674 DOI: 10.1007/s00432-019-02997-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies have shown that the short-chain fatty acids (SCFAs) produced by the gut microbiota play a positive role in the development of colorectal cancer (CRC). AIMS This study aims to elucidate the "food-microorganism-SCFAs" axis and to provide guidance for prevention and intervention in CRC. METHODS The PubMed, Embase and Cochrane databases were searched from their inceptions to August 2018, and 75 articles and 25 conference abstracts were included and analysed after identification and screening. RESULTS The concentrations of SCFAs in CRC patients and individuals with a high risk of CRC were higher than those in healthy individuals. The protective mechanism of SCFAs against CRC has been described in three aspects: epigenetics, immunology and molecular signalling pathways. Many food and plant extracts that were fermented by microorganisms produced SCFAs that play positive roles with preventive and therapeutic effects on CRC. The "food-microorganism-SCFAs" axis was constructed by summarizing the pertinent literature. CONCLUSIONS This study provides insight into the basic research and practical application of SCFAs by assessing the protective effect of SCFAs on CRC.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No.198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Da Miao
- Medical College of Nursing, Huzhou University, No. 759, Erhuan East Road, Huzhou, 313000, Zhejiang Province, China
| | - Qi Quan
- Department of Medical Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No.198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Wu Wei
- Department of Digestive System, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Zhang Zhongshan
- Department of Medicine, Huzhou University, No. 759, Erhuan East Road, Huzhou, 313000, Zhejiang Province, China
| | - Zhang Chun
- Department of Infectious Disease, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, 313000, Zhejiang Province, China
| | - Yang Xi
- Department of Intervention and Radiotherapy, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, No. 198 Hongqi Road, Huzhou, Zhejiang Province, 313000, China.
| |
Collapse
|
29
|
Shuwen H, Xi Y, Quan Q, Yuefen P, Miao D, Qing Z. Relationship between intestinal microorganisms and T lymphocytes in colorectal cancer. Future Oncol 2019; 15:1655-1666. [PMID: 31044617 DOI: 10.2217/fon-2018-0595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant cancer worldwide. Recent studies have identified the gut microbiota as the origin of CRC, and T lymphocyte-mediated immune functions have been shown to play an important role in this disease. By summarizing previous literature, we found that Fusobacterium nucleatum may protect CRC from immune cell attack by inhibiting T cells and influencing the production of many chemokines and cytokines. Some bacterial metabolites and probiotics have been shown to participate in the regulation of CRC through T cell-mediated molecular pathways. To visualize the relevant data, an association network of intestinal microorganisms and T lymphocytes associated with CRC was constructed. This work may provide direction for - and insight into - further research on the relationship between intestinal microorganisms and T lymphocytes in CRC.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Yang Xi
- Department of Intervention & Radiotherapy, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Qi Quan
- Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Pan Yuefen
- Department of Medical Oncology, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| | - Da Miao
- Department of Critical Care Medicine, Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, Zhejiang Province 313000, PR China
| | - Zhou Qing
- Department of Critical Care Medicine, Huzhou Central Hospital, No.198 Hongqi Road, Huzhou, Zhejiang Province 313000, PR China
| |
Collapse
|
30
|
Fei Z, Lijuan Y, Xi Y, Wei W, Jing Z, Miao D, Shuwen H. Gut microbiome associated with chemotherapy-induced diarrhea from the CapeOX regimen as adjuvant chemotherapy in resected stage III colorectal cancer. Gut Pathog 2019; 11:18. [PMID: 31168325 PMCID: PMC6489188 DOI: 10.1186/s13099-019-0299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy induced diarrhea (CID) is a common side effect in patients receiving chemotherapy for cancer. The aim of our study was to explore the association between gut microorganisms and CID from the CapeOX regimen in resected stage III colorectal cancer (CRC) patients. Results After screening and identification, 17 stool samples were collected from resected stage III CRC patients undergoing the CapeOX regimen. Bacterial 16S ribosomal RNA genes was sequenced, and a bioinformatics analysis was executed to screen for the distinctive gut microbiome and the functional metabolism associated with CID due to the CapeOX regimen. The gut microbial community richness and community diversity were lower in CID (p < 0.05 vs control group). Klebsiella pneumoniae was the most predominant species (31.22%) among the gut microbiome in CRC patients with CID. There were 75 microorganisms with statistically significant differences at the species level between the CRC patients with and without CID (LDA, linear discriminant analysis score > 2), and there were 23 pathways that the differential microorganisms might be involved in. Conclusions The gut microbial community structure and diversity have changed in CRC patients with CID. It may provide novel insights into the prevention and treatment of CID. Electronic supplementary material The online version of this article (10.1186/s13099-019-0299-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zuo Fei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yin Lijuan
- 2Department of Rheumatology & Immunology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yang Xi
- 3Department of Intervention and Radiotherapy, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Wu Wei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Zhong Jing
- 4Department of Central Laboratory, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Da Miao
- 5Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000 Zhejiang China
| | - Han Shuwen
- 6Department of Medical Oncology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| |
Collapse
|
31
|
Han S, Pan Y, Yang X, Da M, Wei Q, Gao Y, Qi Q, Ru L. Intestinal microorganisms involved in colorectal cancer complicated with dyslipidosis. Cancer Biol Ther 2018; 20:81-89. [PMID: 30239257 DOI: 10.1080/15384047.2018.1507255] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Abnormal lipid metabolism is considered to be one of main promoters of colorectal cancer (CRC), and intestinal microorganisms may be involved in CRC in patients with abnormal lipid metabolism. OBJECTIVE To investigate lipid metabolism in CRC patients and explore the role of intestinal microorganisms in CRC complicated with abnormal lipid metabolism. METHODS Overall, 150 CRC patients in Huzhou Central Hospital from January 2016 to September 2017 were recruited in the present study. Basic patient information and clinical serological indicators were investigated and analyzed. Twenty-one stool samples were collected from patients after receiving informed consent. Next-generation sequencing technology was used to sequence bacterial 16S ribosomal RNA. Bioinformatics analysis was used to profile the microbial composition and screen distinctive bacteria in patients with CRC complicated with abnormal lipid metabolism. RESULTS Apo B and FFA levels were higher in patients with stage I disease than in patients with other stages. HDL, LDL, Apo B and FFA levels were higher in female patients than in male patients. FFA level was higher in rectal cancer patients than in colon cancer patients. These differences were statistically significant (p < 0.05). The proportion of Escherichia/Shigella was increased in CRC patients with hyperlipoidaemia and hypercholesteremia; the abundance of Streptococcus was increased in CRC patients with hyperlipoidaemia; the abundance of Clostridium XIVa was reduced in CRC patients with hyperlipoidaemia and hypercholesteremia; and the abundance of Ruminococcaceae was reduced in CRC patients with hypercholesteremia. Bilophila and Butyricicoccus were closely related to CRC patients without hyperlipoidaemia or hypercholesteremia, and Selenomonas, Clostridium, Bacteroidetes Slackia, Burkholderiales and Veillonellaceae were closely related to CRC patients with hyperlipoidaemia. Some pathways, including secretion system, chaperones and folding catalysts, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, histidine metabolism, pores and ion channels, nitrogen metabolism and sporulation, may be involved in lipid metabolism abnormality in CRC patients. CONCLUSIONS Many CRC patients have abnormal lipid metabolism, and the intestinal microbiota is altered in these CRC patients.
Collapse
Affiliation(s)
- Shuwen Han
- a Department of Medical Oncology , Huzhou Central Hospital , Huzhou , Zhejiang , China
| | - Yuefen Pan
- a Department of Medical Oncology , Huzhou Central Hospital , Huzhou , Zhejiang , China
| | - Xi Yang
- b Department of Intervention and Radiotherapy , Huzhou Central Hospital , Huzhou , Zhejiang Province , China
| | - Miao Da
- c Medical College of Nursing , Huzhou University , Huzhou , Zhejiang Province , China
| | - Qiang Wei
- d Department of Gastrointestinal Surgery , Huzhou Central Hospital , Huzhou , Zhejiang , China
| | - Yuhai Gao
- d Department of Gastrointestinal Surgery , Huzhou Central Hospital , Huzhou , Zhejiang , China
| | - Quan Qi
- a Department of Medical Oncology , Huzhou Central Hospital , Huzhou , Zhejiang , China
| | - Lixin Ru
- b Department of Intervention and Radiotherapy , Huzhou Central Hospital , Huzhou , Zhejiang Province , China
| |
Collapse
|