1
|
Zaltron E, Vianello F, Ruzza A, Palazzo A, Brillo V, Celotti I, Scavezzon M, Rossin F, Leanza L, Severin F. The Role of Transglutaminase 2 in Cancer: An Update. Int J Mol Sci 2024; 25:2797. [PMID: 38474044 DOI: 10.3390/ijms25052797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed and well characterized member of the transglutaminase family. It is a ubiquitous multifunctional enzyme implicated in the regulation of several cellular pathways that support the survival, death, and general homeostasis of eukaryotic cells. Due to its multiple localizations both inside and outside the cell, TG2 participates in the regulation of many crucial intracellular signaling cascades in a tissue- and cell-specific manner, making this enzyme an important player in disease development and progression. Moreover, TG2 is capable of modulating the tumor microenvironment, a process of dynamic tissue remodeling and biomechanical events, resulting in changes which influence tumor initiation, growth, and metastasis. Even if generally related to the Ca2+-dependent post-translational modification of proteins, a number of different biological functions have been ascribed to TG2, like those of a peptide isomerase, protein kinase, guanine nucleotide binder, and cytosolic-nuclear translocator. With respect to cancer, TG2's role is controversial and highly debated; it has been described both as an anti- and pro-apoptotic factor and is linked to all the processes of tumorigenesis. However, numerous pieces of evidence support a tissue-specific role of TG2 so that it can assume both oncogenic and tumor-suppressive roles.
Collapse
Affiliation(s)
| | | | - Alessia Ruzza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Alberta Palazzo
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Ilaria Celotti
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Federica Rossin
- Department of Biology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Filippo Severin
- Department of Biology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
2
|
Campisi A, Sposito G, Grasso R, Bisicchia J, Spatuzza M, Raciti G, Scordino A, Pellitteri R. Effect of Astaxanthin on Tissue Transglutaminase and Cytoskeletal Protein Expression in Amyloid-Beta Stressed Olfactory Ensheathing Cells: Molecular and Delayed Luminescence Studies. Antioxidants (Basel) 2023; 12:antiox12030750. [PMID: 36978998 PMCID: PMC10045022 DOI: 10.3390/antiox12030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Astaxanthin, a natural compound of Haematococcus pluvialis, possesses antioxidant, anti-inflammatory, anti-tumor and immunomodulatory activities. It also represents a potential therapeutic in Alzheimer’s disease (AD), that is related to oxidative stress and agglomeration of proteins such as amyloid-beta (Aβ). Aβ is a neurotoxic protein and a substrate of tissue transglutaminase (TG2), an ubiquitary protein involved in AD. Herein, the effect of astaxanthin pretreatment on olfactory ensheathing cells (OECs) exposed to Aβ(1–42) or by Aβ(25–35) or Aβ(35–25), and on TG2 expression were assessed. Vimentin, GFAP, nestin, cyclin D1 and caspase-3 were evaluated. ROS levels and the percentage of cell viability were also detected. In parallel, delayed luminescence (DL) was used to monitor mitochondrial status. ASTA reduced TG2, GFAP and vimentin overexpression, inhibiting cyclin D1 levels and apoptotic pathway activation which induced an increase in the nestin levels. In addition, significant changes in DL intensities were particularly observed in OECs exposed to Aβ toxic fragment (25–35), that completely disappear when OECs were pre-incubated in astaxantin. Therefore, we suggest that ASTA pre-treatment might represent an innovative mechanism to contrast TG2 overexpression in AD.
Collapse
Affiliation(s)
- Agatina Campisi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-4070; Fax: +39-095-738-4220
| | - Giovanni Sposito
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT, Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Rosaria Grasso
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Julia Bisicchia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Michela Spatuzza
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| | - Giuseppina Raciti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Agata Scordino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
- Laboratori Nazionali del Sud, National Institute for Nuclear Physics, 95123 Catania, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, 95126 Catania, Italy
| |
Collapse
|
3
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
4
|
Yang M, Gao XR, Meng YN, Shen F, Chen YP. ETS1 Ameliorates Hyperoxia-Induced Alveolar Epithelial Cell Injury by Regulating the TGM2-Mediated Wnt/β-Catenin Pathway. Lung 2021; 199:681-690. [PMID: 34817668 DOI: 10.1007/s00408-021-00489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects newborns who need oxygen therapy, and high-concentration oxygen therapy may cause neonatal morbidity and mortality in newborns. E26 oncogene homologue 1 (ETS1) and transglutaminase 2 (TGM2) have been reported to be associated with lung cell injury. However, the mechanism of ETS1 in regulating BPD is still unclear. METHODS Hyperoxia-induced A549 cells to simulate hyperoxia-induced alveolar epithelial cell injury. MTT assays and colony formation assays were performed to investigate the proliferation of A549 cells. Flow cytometry was carried out to quantify the apoptosis of A549 cells. The expression levels of ETS1 and TGM2 were quantified by qRT-PCR. The protein expression levels of ETS1, TGM2, β-catenin, c-Jun and MET were measured by western blot. Overexpression of ETS1, overexpression of TGM2, overexpression of ETS1 with downregulation of TGM2 and overexpression of TGM2 with inhibition of Wnt/β-catenin pathway were performed to investigate the role of ETS1, TGM2 and Wnt/β-catenin pathways in hyperoxia-induced alveolar epithelial cell injury. RESULTS Hyperoxia decreased the proliferation and promoted the apoptosis of cells in a time-dependent manner. Moreover, overexpression of ETS1 rescued the effect of hyperoxia on proliferation and apoptosis. In addition, overexpression of TGM2 participated in the regulation of hyperoxia-induced proliferation and apoptosis. ETS1 regulated hyperoxia-induced alveolar epithelial cell injury through the Wnt/β-catenin pathway via TGM2. CONCLUSION ETS1 ameliorates hyperoxia-induced alveolar epithelial cell injury through the TGM2-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Xi-Rong Gao
- Neonate Department, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ni Meng
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ping Chen
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
5
|
Lei X, Cao K, Chen Y, Shen H, Liu Z, Qin H, Cai J, Gao F, Yang Y. Nuclear Transglutaminase 2 interacts with topoisomerase II⍺ to promote DNA damage repair in lung cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:224. [PMID: 34225780 PMCID: PMC8258933 DOI: 10.1186/s13046-021-02009-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND To block repairs of DNA damages, especially the DNA double strand break (DSB) repair, can be used to induce cancer cell death. DSB repair depends on a sequential activation of DNA repair factors that may be potentially targeted for clinical cancer therapy. Up to now, many protein components of DSB repair complex remain unclear or poorly characterized. In this study, we discovered that Transglutaminase 2 (TG2) acted as a new component of DSB repair complex. METHODS A bioinformatic analysis was performed to identify DNA damage relative genes from dataset from The Cancer Genome Atlas. Immunofluorescence and confocal microscopy were used to monitor the protein localization and recruitment kinetics. Furthermore, immunoprecipitation and mass spectrometry analysis were performed to determine protein interaction of both full-length and fragments or mutants in distinct domain. In situ lung cancer model was used to study the effects cancer therapy in vivo. RESULTS After DSB induction, cytoplasmic TG2 was extensively mobilized and translocated into nucleus after phosphorylated at T162 site by DNA-PKcs. Nuclear TG2 quickly accumulated at DSB sites and directly interacting with Topoisomerase IIα (TOPOIIα) with its TGase domain to promote DSB repair. TG2 deficient cells lost capacity of DSB repair and become susceptible to ionizing radiation. Specific inhibition of TG2-TOPOIIα interaction by glucosamine also significantly inhibited DSB repair, which increased sensitivity in lung cancer cells and engrafted lung cancers. CONCLUSIONS These findings elucidate new mechanism of TG2 in DSB repair trough directly interacting with TOPOIIα, inhibition of which provided potential target for overcoming cancer resistance.
Collapse
Affiliation(s)
- Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China.,Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, P.R. China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China
| | - Hui Shen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China
| | - Zhe Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China
| | - Hongran Qin
- Department of Nuclear Radiation, Shanghai Pulmonary Hospital, Tongji University, 507, Zhengmin Road, 200433, Shanghai, P.R. China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China. .,School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, P.R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, P.R. China.
| |
Collapse
|
6
|
Wu Y, Gao Y, Su J, Chen Z, Liu S. In situ detection of intracellular tissue transglutaminase based on aggregation-induced emission. Chem Commun (Camb) 2020; 56:9008-9011. [PMID: 32638755 DOI: 10.1039/d0cc03365k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel strategy for in situ imaging and real-time monitoring of intracellular tissue transglutaminase (TG2) is presented based on aggregation-induced emission (AIE). It has high sensitivity and specificity, minimal background signal and can also effectively distinguish different cell types (drug-resistant cancer cells, cancer cells and normal cells).
Collapse
Affiliation(s)
- Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | | | |
Collapse
|