1
|
Zhang Z, Zhu D, Shi P, Wu J, Li F, Chen Y. LncRNA XIST knockdown reduces myocardial damage in myocarditis by targeting the miR-140-3p/RIPK1 axis. Biotechnol Genet Eng Rev 2024; 40:1425-1437. [PMID: 36971142 DOI: 10.1080/02648725.2023.2194074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Viral myocarditis (MC) is caused by Coxsackie virus B3 (CVB3)-induced cardiomyocyte apoptosis and inflammation, and changes in miRNA and lncRNA are linked to cardiac remodeling. The long non-coding RNA XIST (XIST) has been identified as a regulator in various pathological processes in heart diseases, but its role in CVB3-induced MC is not well understood. This research aimed to evaluate the impact that XIST has on CVB3-induced MC as well as the mechanism behind this effect. XIST expression in CVB3-exposed H9c2 cells (H9c2 cells) was evaluated by qRT-PCR. In CVB3-exposed H9c2 cells, reactive oxygen species production, inflammatory mediators, and apoptosis were experimentally observed. An investigation into and confirmation of the existence of an interaction involving XIST, miR-140-3p, and RIPK1 were carried out. The findings showed that CVB3 induced upregulation of XIST in H9c2 cells. However, XIST knockdown reduced oxidative stress, inflammation, and apoptosis of CVB3-exposed H9c2 cells. XIST was specifically bound to miR-140-3p, and there was mutual negative regulation between the two. Moreover, XIST downregulated RIPK1, which was mediated by miR-140-3p. The study suggests that downregulating XIST can alleviate inflammatory injury in CVB3-exposed H9c2 cells through the miR-140-3p/RIPK1 axis. These findings provide novel insights into the underlying mechanisms of MC.
Collapse
Affiliation(s)
- Zhifang Zhang
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Diqi Zhu
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Shi
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinjin Wu
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fen Li
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwei Chen
- Department of Cardiology, Shanghai Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cui Y, Hu M, Zhou H, Guo J, Wang Q, Xu Z, Chen L, Zhang W, Tang S. Identifying potential drug targets for varicose veins through integration of GWAS and eQTL summary data. Front Genet 2024; 15:1385293. [PMID: 38818040 PMCID: PMC11138158 DOI: 10.3389/fgene.2024.1385293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
Background Varicose veins (VV) are a common chronic venous disease that is influenced by multiple factors. It affects the quality of life of patients and imposes a huge economic burden on the healthcare system. This study aimed to use integrated analysis methods, including Mendelian randomization analysis, to identify potential pathogenic genes and drug targets for VV treatment. Methods This study conducted Summary-data-based Mendelian Randomization (SMR) analysis and colocalization analysis on data collected from genome-wide association studies and cis-expression quantitative trait loci databases. Only genes with PP.H4 > 0.7 in colocalization were chosen from the significant SMR results. After the above analysis, we screened 12 genes and performed Mendelian Randomization (MR) analysis on them. After sensitivity analysis, we identified four genes with potential causal relationships with VV. Finally, we used transcriptome-wide association studies and The Drug-Gene Interaction Database data to identify and screen the remaining genes and identified four drug targets for the treatment of VV. Results We identified four genes significantly associated with VV, namely, KRTAP5-AS1 [Odds ratio (OR) = 1.08, 95% Confidence interval (CI): 1.05-1.11, p = 1.42e-10] and PLEKHA5 (OR = 1.13, 95% CI: 1.06-1.20, p = 6.90e-5), CBWD1 (OR = 1.05, 95% CI: 1.01-1.11, p = 1.42e-2) and CRIM1 (OR = 0.87, 95% CI: 0.81-0.95, p = 3.67e-3). Increased expression of three genes, namely, KRTAP5-AS1, PLEKHA5, and CBWD1, was associated with increased risk of the disease, and increased expression of CRIM1 was associated with decreased risk of the disease. These four genes could be targeted for VV therapy. Conclusion We identified four potential causal proteins for varicose veins with MR. A comprehensive analysis indicated that KRTAP5-AS1, PLEKHA5, CBWD1, and CRIM1 might be potential drug targets for varicose veins.
Collapse
Affiliation(s)
- Yu Cui
- Shantou University Medical College, Shantou, Guangdong, China
| | - Mengting Hu
- Shantou University Medical College, Shantou, Guangdong, China
| | - He Zhou
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jiarui Guo
- Shantou University Medical College, Shantou, Guangdong, China
| | - Qijia Wang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zaihua Xu
- Shantou University Medical College, Shantou, Guangdong, China
| | - Liyun Chen
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
| | - Wancong Zhang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
- Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, China
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Xiao W, Lai Y, Yang H, Que H. Predictive Role of a Novel Ferroptosis-Related lncRNA Pairs Model in the Prognosis of Papillary Thyroid Carcinoma. Biochem Genet 2024; 62:775-797. [PMID: 37436560 DOI: 10.1007/s10528-023-10447-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
This study aimed to evaluate the potential prognostic value of ferroptosis-related long non-coding RNAs (lncRNAs) in papillary thyroid carcinoma (PTC). Based on The TCGA database, lncRNAs and ferroptosis-related genes with differential expression levels in PTC tumors vs. normal tissues were screened. After the co-expression network construction, ferroptosis-related lncRNAs (FRLs) were screened. Kaplan-Meier analysis was conducted to compare the survival performance of patients with PTC in the high- and low-risk groups. Furthermore, a nomogram was created to enhance PTC prognosis. CIBERSORT was used to investigate the infiltration of various immune cells in high- and low-risk groups. In total, 10 lncRNA pairs with differential expression levels were obtained. There were significant differences in the histological subtype and pathological stage between the high- and low-risk groups, and age (P = 7.39E-13) and FRLM model status (P = 1.09E-04) were identified as independent prognostic factors. Subsequently, the nomogram survival model showed that the predicted one-, three-, and five-year survival rates were similar to the actual one- (c-index = 0.8475), three- (c-index = 0.7964), and five-year (c-index = 0.7555) survival rates. Subjects in the low-risk group had significantly more CD4 + memory T cells and resting myeloid dendritic cells, and subjects in the high-risk group had more plasma B cells and monocytes. The risk assessment model constructed using FRLs showed good predictive value for the prognosis of patients with PTC.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Traditional Chinese Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haojie Yang
- Department of Coloproctology, Yueyang Hospital of Integrated Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai, 200032, China.
| | - Huafa Que
- Department of Traditional Chinese Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
4
|
Yang M, Su Y, Zheng H, Xu K, Yuan Q, Cai Y, Aihaiti Y, Xu P. Identification of the potential regulatory interactions in rheumatoid arthritis through a comprehensive analysis of lncRNA-related ceRNA networks. BMC Musculoskelet Disord 2023; 24:799. [PMID: 37814309 PMCID: PMC10561475 DOI: 10.1186/s12891-023-06936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE This study aimed at constructing a network of competing endogenous RNA (ceRNA) in the synovial tissues of rheumatoid arthritis (RA). It seeks to discern potential biomarkers and explore the long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) axes that are intricately linked to the pathophysiological mechanisms underpinning RA, and providing a scientific basis for the pathogenesis and treatment of RA. METHODS Microarray data pertaining to RA synovial tissue, GSE103578, GSE128813, and GSE83147, were acquired from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ). Conducted to discern both differentially expressed lncRNAs (DELncRNAs) and differentially expressed genes (DEGs). A ceRNA network was obtained through key lncRNAs, key miRNAs, and key genes. Further investigations involved co-expression analyses to uncover the lncRNA-miRNA-mRNA axes contributing to the pathogenesis of RA. To delineate the immune-relevant facets of this axis, we conducted an assessment of key genes, emphasizing those with the most substantial immunological correlations, employing the GeneCards database. Finally, gene set enrichment analysis (GSEA) was executed on the identified key lncRNAs to elucidate their functional implications in RA. RESULTS The 2 key lncRNAs, 7 key miRNAs and 6 key genes related to the pathogenesis of RA were obtained, as well as 2 key lncRNA-miRNA-mRNA axes (KRTAP5-AS1-hsa-miR-30b-5p-PNN, XIST-hsa-miR-511-3p/hsa-miR-1277-5p-F2RL1). GSEA of two key lncRNAs obtained biological processes and signaling pathways related to RA synovial lesions. CONCLUSION The findings of this investigation hold promise in furnishing a foundational framework and guiding future research endeavors aimed at comprehending the etiology and therapeutic interventions for RA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yani Su
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
5
|
Lovatel VL, Bueno AP, de Kós EAA, Meyer LGC, Ferreira GM, Kalonji MDF, de Mello FV, Milito CB, da Costa ES, Abdelhay E, Redondo MDT, Pombo-de-Oliveira MS, Fernandez TDS. A Novel Constitutional t(3;8)(p26;q21) and ANKRD26 and SRP72 Variants in a Child with Myelodysplastic Neoplasm: Clinical Implications. J Clin Med 2023; 12:3171. [PMID: 37176611 PMCID: PMC10179081 DOI: 10.3390/jcm12093171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Childhood myelodysplastic neoplasm (cMDS) often raises concerns about an underlying germline predisposition, and its verification is necessary to guide therapeutic choice and allow family counseling. Here, we report a novel constitutional t(3;8)(p26;q21) in a child with MDS, inherited from the father, the ANKRD26 and SRP72 variants from the maternal origin, and the acquisition of molecular alterations during MDS evolution. CASE PRESENTATION A 4-year-old girl showed repeated infections and severe neutropenia. Bone marrow presented hypocellularity with dysplastic features. The patient had a t(3;8)(p26;q21)c identified by G-banding and FISH analysis. The family nucleus investigation identified the paternal origin of the chromosomal translocation. The NGS study identified ANKRD26 and SRP72 variants of maternal origin. CGH-array analysis detected alterations in PRSS3P2 and KANSL genes. Immunohistochemistry showed abnormal p53 expression during the MDS evolution. CONCLUSION This study shows for the first time, cytogenetic and genomic abnormalities inherited from the father and mother, respectively, and their clinical implications. It also shows the importance of investigating patients with constitutional cytogenetic alterations and/or germline variants to provide information to their family nucleus for genetic counseling and understanding of the pathogenesis of childhood MDS.
Collapse
Affiliation(s)
- Viviane Lamim Lovatel
- Cytogenetic Laboratory, Cell and Gene Therapy Program, Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, Brazil
| | - Ana Paula Bueno
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Pathology Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Elaiza Almeida Antônio de Kós
- Cytogenetic Laboratory, Cell and Gene Therapy Program, Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, Brazil
| | - Laura Guimarães Corrêa Meyer
- Outpatient Department, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Gerson Moura Ferreira
- Stem Cell Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Mayara de Fátima Kalonji
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Fabiana Vieira de Mello
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Cristiane Bedran Milito
- Pathology Department, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Elaine Sobral da Costa
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | | | | | - Teresa de Souza Fernandez
- Cytogenetic Laboratory, Cell and Gene Therapy Program, Instituto Nacional do Câncer (INCA), Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
6
|
Liu Y, Huang Y, Mo G, Zhou T, Hou Q, Shi C, Yu J, Lv Y. Combined prognostic value of preoperative serum thyrotrophin and thyroid hormone concentration in papillary thyroid cancer. J Clin Lab Anal 2022; 36:e24503. [PMID: 35666615 PMCID: PMC9279971 DOI: 10.1002/jcla.24503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Background A growing number of studies have found a close association between thyroid hormones and thyrotrophin (TSH), and they also have prognostic significance in some cancer types; this study aimed to investigate the prognostic value of free triiodothyronine (fT3), free thyroxine (fT4), fT3/fT4, TSH, and their combination in patients with papillary thyroid carcinoma (PTC). Methods This study retrospectively analyzed the relevant data of 726 newly diagnosed PTC patients. Both univariate and multivariate analyses were used to predict the recurrence rate, and a risk score was established. In addition, with the use of a random survival forest, a random forest (RF) score was constructed. After calculating the area under the curve (AUC), the diagnostic efficacy of risk score, RF score, and four indicators was compared. Results fT3, fT4, fT3/fT4, and TSH were strongly associated with some invasive clinicopathological features and postoperative recurrence. Patients with high expression of fT4 and TSH have a high risk of recurrence. By contrast, patients with high expression of fT3 and fT3/fT4 have a low risk of recurrence. At the same time, the combined use of various indicators is more helpful for establishing an accurate diagnosis. By comparison, we found that the RF score was better than the risk score in terms of predicting the recurrence of PTC. Conclusion The diagnostic accuracy of a combination of fT3, fT4, fT3/fT4, and TSH can help improve our clinical estimate of the risk of recurrent PTC, thus allowing the development of a more effective treatment plan for patients.
Collapse
Affiliation(s)
- Yushu Liu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The second clinical medicine college, Medical Department, Nanchang University, Nanchang, China
| | - Yanyi Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The second clinical medicine college, Medical Department, Nanchang University, Nanchang, China
| | - Guoheng Mo
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,The Queen of Mary college, Medical Department, Nanchang University, Nanchang, China
| | - Tao Zhou
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Hou
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoqun Shi
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jichun Yu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunxia Lv
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Lu H, Zhu C, Chen Y, Ruan Y, Fan L, Chen Q, Wei Q. LncRNA ABHD11-AS1 promotes tumor progression in papillary thyroid carcinoma by regulating EPS15L1/EGFR signaling pathway. Clin Transl Oncol 2022; 24:1124-1133. [PMID: 35098448 DOI: 10.1007/s12094-021-02753-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) acts as an oncogene involved in papillary thyroid carcinoma (PTC) occurrence and progression. ABHD11-AS1 exerts biologic functions by some miRNAs and proteins to regulate multiple targets. Identification of novel mechanism of ABHD11-AS1 could be helpful in therapeutic targeting for PTC treatment. METHODS Differentially expressed lncRNAs were selected from TCGA database. qRT-PCR analysis was applied to examine the expression of ABHD11-AS1 in PTC cell lines and tissues. The relationship of ABHD11-AS1 expression and clinicopathological features was analyzed by Kaplan-Meier analysis. Two PTC cell lines (TPC-1 and KTC-1) were transfected with pcDNA 3.1, pcDNA3.1-ABHD11-AS1, si-NC and si-ABHD11-AS1, respectively, to verify the ABHD11-AS1 oncogene-regulating capacity to promote tumor progression. The cell metastasis and proliferation had been evaluated both in vitro and in vivo. RESULTS High expression of ABHD11-AS1 was found in PTC tissues (P < 0.01), which was significantly correlated with lymph node metastasis (P < 0.05). ABHD11-AS1 overexpression noticeably promoted cell proliferation, migration, and invasion capabilities, which were obviously decreased upon ABHD11-AS1 knockdown. ABHD11-AS1 positively regulated EGFR/EPS15L1 pathway, as EGFR, EPS15L1, STAT3, and p-STAT3 were activated. CONCLUSION ABHD11-AS1 promotes tumor progression in PTC by regulating EPS15L1/EGFR pathway.
Collapse
Affiliation(s)
- H Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - C Zhu
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China
| | - Y Chen
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Y Ruan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China
| | - L Fan
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, China
| | - Q Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People's Republic of China.
| | - Q Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
8
|
hsa-miR-206b Involves in the Development of Papillary Thyroid Carcinoma via Targeting LMX1B. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7488708. [PMID: 35342753 PMCID: PMC8948606 DOI: 10.1155/2022/7488708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 11/18/2022]
Abstract
Objectives Papillary thyroid carcinoma (PTC) is the most common endocrine system malignant thyroid cancer, and patients with lymph node metastasis typically exhibit poor prognosis. MicroRNAs (miRNAs) can act as either oncogenes or tumor suppressors in PTC. This study was aimed at using PTC transcriptome data obtained from The Cancer Genome Atlas (TCGA) to identify differentially expressed, survival-related miRNAs and target genes. Methods We analyzed the TCGA datasets to identify differentially expressed mRNAs/miRNAs in 493 PTC patients with stage I_II group (stages I and II) versus stage III_IV group (stages III and IV) according to TNM staging. The Kaplan-Meier survival analysis, the Cox regression analysis, and the log-rank test were performed to investigate survival-related miRNAs. Results We identified 36 significantly differentially expressed miRNAs in the stage I_II group versus the stage III_IV group, in which 31 were upregulated and only 5 were downregulated (i.e., hsa-miR-891a-5p, hsa-miR-892a, hsa-miR-888-5p, hsa-miR-891b, and hsa-miR-892b). Additionally, five signature miRNAs (hsa-miR-206, hsa-miR-299-3p, hsa-miR-299-5p, hsa-miR-496, and hsa-miR-509-3-5p) were associated with the overall survival of PTC patients. We also found that LMX1B, whose expression was inversely correlated with hsa-miR-206 expression, was a putative target gene of hsa-miR-206 and LMX1B was likely to serve as a tumor suppressor in PTC. Conclusion hsa-miR-206b might be involved in promoting TNM staging in PTC via targeting of LMX1B.
Collapse
|
9
|
Huang Y, Yi T, Liu Y, Yan M, Peng X, Lv Y. The landscape of tumors-infiltrate immune cells in papillary thyroid carcinoma and its prognostic value. PeerJ 2021; 9:e11494. [PMID: 34055497 PMCID: PMC8142931 DOI: 10.7717/peerj.11494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction Thyroid cancer is a very common malignant tumor in the endocrine system, while the incidence of papillary thyroid carcinoma (PTC) throughout the world also shows a trend of increase year by year. In this study, we constructed two models: ICIscore and Riskscore. Combined with these two models, we can make more accurate and reasonable inferences about the prognosis of PTC patients. Methods We selected 481 PTC samples from TCGA and 147 PTC samples from GEO (49 samples in GSE33630, 65 samples in GSE35570 and 33 samples in GSE60542). We performed consistent clustering for them and divided them into three subgroups and screened differentially expressed genes from these three subgroups. Then we divided the differential genes into three subtypes. We also distinguished the up-regulated and down-regulated genes and calculated ICIscore for each PTC sample. ICIscore consists of two parts: (1) the PCAu was calculated from up-regulated genes. (2) the PCAd was calculated from down-regulated genes. The PCAu and PCAd of each sample were the first principal component of the relevant gene. What’s more, we divided the patients into two groups and constructed mRNA prognostic signatures. Additionally we also verified the independent prognostic value of the signature. Results Though ICIscore, we were able to observe the relationship between immune infiltration and prognosis. The result suggests that the activation of the immune system may have both positive and negative consequences. Though Riskscore, we could make more accurate predictions about the prognosis of patients with PTC. Meanwhile, we also generated and validated the ICIscore group and Riskscore group respectively. Conclusion All the research results show that by combining the two models constructed, ICIscore and Riskscore, we can make a more accurate and reasonable inference about the prognosis of patients with clinical PTC patients. This suggests that we can provide more effective and reasonable treatment plan for clinical PTC patients.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Tao Yi
- Department of Otolaryngology, People's Hospital of Yichun, Yichun, Jiangxi, China
| | - Yushu Liu
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Mengyun Yan
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The First Clinical Medicine College, Nanchang, Jiangxi, China
| | - Xinli Peng
- Department of Otolaryngology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yunxia Lv
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Lazar SB, Pongor L, Li XL, Grammatikakis I, Muys BR, Dangelmaier EA, Redon CE, Jang SM, Walker RL, Tang W, Ambs S, Harris CC, Meltzer PS, Aladjem MI, Lal A. Genome-Wide Analysis of the FOXA1 Transcriptional Network Identifies Novel Protein-Coding and Long Noncoding RNA Targets in Colorectal Cancer Cells. Mol Cell Biol 2020; 40:e00224-20. [PMID: 32839292 PMCID: PMC7556848 DOI: 10.1128/mcb.00224-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Differentiation status of tumors is correlated with metastatic potential and malignancy. FOXA1 (forkhead box A1) is a transcription factor known to regulate differentiation in certain tissues. Here, we investigate FOXA1 function in human colorectal cancer (CRC). We found that FOXA1 is robustly expressed in the normal human colon but significantly downregulated in colon adenocarcinoma. Applying FOXA1 chromatin immunoprecipitation coupled with deep sequencing and transcriptome analysis upon FOXA1 knockdown in well-differentiated CRC cells and FOXA1 overexpression in poorly differentiated CRC cells, we identified novel protein-coding and lncRNA genes regulated by FOXA1. Among the numerous novel FOXA1 targets we identified, we focused on CEACAM5, a tumor marker and facilitator of cell adhesion. We show that FOXA1 binds to a distal enhancer downstream of CEACAM5 and strongly activates its expression. Consistent with these data, we show that FOXA1 inhibits anoikis in CRC cells. Collectively, our results uncover novel protein-coding and noncoding targets of FOXA1 and suggest a vital role of FOXA1 in enhancing CEACAM5 expression and anoikis resistance in CRC cells.
Collapse
Affiliation(s)
- Sarah B Lazar
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emily A Dangelmaier
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Robert L Walker
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Curtis C Harris
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Paul S Meltzer
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
11
|
Szpak-Ulczok S, Pfeifer A, Rusinek D, Oczko-Wojciechowska M, Kowalska M, Tyszkiewicz T, Cieslicka M, Handkiewicz-Junak D, Fujarewicz K, Lange D, Chmielik E, Zembala-Nozynska E, Student S, Kotecka-Blicharz A, Kluczewska-Galka A, Jarzab B, Czarniecka A, Jarzab M, Krajewska J. Differences in Gene Expression Profile of Primary Tumors in Metastatic and Non-Metastatic Papillary Thyroid Carcinoma-Do They Exist? Int J Mol Sci 2020; 21:E4629. [PMID: 32610693 PMCID: PMC7369779 DOI: 10.3390/ijms21134629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Molecular mechanisms of distant metastases (M1) in papillary thyroid cancer (PTC) are poorly understood. We attempted to analyze the gene expression profile in PTC primary tumors to seek the genes associated with M1 status and characterize their molecular function. One hundred and twenty-three patients, including 36 M1 cases, were subjected to transcriptome oligonucleotide microarray analyses: (set A-U133, set B-HG 1.0 ST) at transcript and gene group level (limma, gene set enrichment analysis (GSEA)). An additional independent set of 63 PTCs, including 9 M1 cases, was used to validate results by qPCR. The analysis on dataset A detected eleven transcripts showing significant differences in expression between metastatic and non-metastatic PTC. These genes were validated on microarray dataset B. The differential expression was positively confirmed for only two genes: IGFBP3, (most significant) and ECM1. However, when analyzed on an independent dataset by qPCR, the IGFBP3 gene showed no differences in expression. Gene group analysis showed differences mainly among immune-related transcripts, indicating the potential influence of tumor immune infiltration or signal within the primary tumor. The differences in gene expression profile between metastatic and non-metastatic PTC, if they exist, are subtle and potentially detectable only in large datasets.
Collapse
Affiliation(s)
- Sylwia Szpak-Ulczok
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Aleksandra Pfeifer
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Dagmara Rusinek
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Malgorzata Kowalska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Tomasz Tyszkiewicz
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Marta Cieslicka
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (A.P.); (D.R.); (M.O.-W.); (M.K.); (T.T.); (M.C.)
| | - Daria Handkiewicz-Junak
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Krzysztof Fujarewicz
- Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland; (K.F.); (S.S.)
| | - Dariusz Lange
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Ewa Chmielik
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Ewa Zembala-Nozynska
- Tumor Pathology Department; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (D.L.); (E.C.); (E.Z.-N.)
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, 44-100 Gliwice, Poland; (K.F.); (S.S.)
| | - Agnieszka Kotecka-Blicharz
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Aneta Kluczewska-Galka
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| | - Agnieszka Czarniecka
- The Oncologic and Reconstructive Surgery Clinic; Maria Sklodowska, Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland;
| | - Michal Jarzab
- Breast Unit; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland;
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department; Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; (S.S.-U.); (D.H.-J.); (A.K.-B.); (A.K.-G.); (B.J.)
| |
Collapse
|
12
|
Identification of a Novel Eight-lncRNA Prognostic Signature for HBV-HCC and Analysis of Their Functions Based on Coexpression and ceRNA Networks. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8765461. [PMID: 32382578 PMCID: PMC7180394 DOI: 10.1155/2020/8765461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Studies have demonstrated the prognosis potential of long noncoding RNAs (lncRNAs) for hepatocellular carcinoma (HCC), but specific lncRNAs for hepatitis B virus- (HBV-) related HCC have rarely been reported. This study was aimed at identifying a lncRNA prognostic signature for HBV-HCC and exploring their underlying functions. The sequencing dataset was collected from The Cancer Genome Atlas database as the training set, while the microarray dataset was obtained from the European Bioinformatics Institute database (E-TABM-36) as the validation set. Univariate and multivariate Cox regression analyses identified that eight lncRNAs (TSPEAR-AS1, LINC00511, LINC01136, MKLN1-AS, LINC00506, KRTAP5-AS1, ZNF252P-AS1, and THUMPD3-AS1) were significantly associated with overall survival (OS). These eight lncRNAs were used to construct a risk score model. The Kaplan-Meier survival curve results showed that this risk score can significantly differentiate the OS between the high-risk group and the low-risk group. Receiver operating characteristic curve analysis demonstrated that this risk score exhibited good prediction effectiveness (area under the curve (AUC) = 0.990 for the training set; AUC = 0.903 for the validation set). Furthermore, this lncRNA risk score was identified as an independent prognostic factor in the multivariate analysis after adjusting other clinical characteristics. The crucial coexpression (LINC00511-CABYR, THUMPD3-AS1-TRIP13, LINC01136-SFN, LINC00506-ANLN, and KRTAP5-AS1/TSPEAR-AS1/MKLN1-AS/ZNF252P-AS1-MC1R) or competing endogenous RNA (THUMPD3-AS1-hsa-miR-450a-TRIP13) interaction axes were identified to reveal the possible functions of lncRNAs. These genes were enriched into cell cycle-related biological processes or pathways. In conclusion, our study identified a novel eight-lncRNA prognosis signature for HBV-HCC patients and these lncRNAs may be potential therapeutic targets.
Collapse
|
13
|
Gao L, Lin P, Chen P, Gao R, Yang H, He Y, Chen J, Luo Y, Xu Q, Liang S, Gu J, Huang Z, Dang Y, Chen G. A novel risk signature that combines 10 long noncoding RNAs to predict neuroblastoma prognosis. J Cell Physiol 2019; 235:3823-3834. [PMID: 31612488 DOI: 10.1002/jcp.29277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Li Gao
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Lin
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Peng Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Rui‐Zhi Gao
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Hong Yang
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yun He
- Department of Ultrasound First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jia‐Bo Chen
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Ge Luo
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Qiong‐Qian Xu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Song‐Wu Liang
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jin‐Han Gu
- Department of Pediatric Surgery First calculated using the following formula Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Zhi‐Guang Huang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yi‐Wu Dang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
14
|
Xing L, Zhang X, Chen A. Prognostic 4-lncRNA-based risk model predicts survival time of patients with head and neck squamous cell carcinoma. Oncol Lett 2019; 18:3304-3316. [PMID: 31452809 PMCID: PMC6704293 DOI: 10.3892/ol.2019.10670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common malignant disease with high mortality rates. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to participate in a number of important biological functions and could serve as prognostic biomarkers in the field of oncology. Therefore, the present study aimed to identify an lncRNA-based model that was associated with prognosis. RNA-sequencing data was downloaded from The Cancer Genome Atlas and R software was used to analyze the data. Univariate analyses, robust likelihood analyses and multivariate analyses were performed to screen out key lncRNA candidates associated with prognosis and construct a risk model. A Kaplan-Meier plot was constructed for survival analysis. LncBase and Starbase were used to identify the miRNA and protein targets. Gene set enrichment analysis was used for functional analysis. As a result, a 4-lncRNA (ALMS1-IT1, RP11-359J14.2, CTB-178M22.2 and RP11-347C18.5) based risk model was identified and patients in the high-risk group were revealed to have a lower survival rate than patients in the low-risk group. A nomogram that could predict the survival of patients was plotted. A total of 79 target miRNAs and 61 target proteins were identified. The gene set enrichment analysis results revealed that nutrient metabolism pathways were enriched in the high-risk group and immune regulation pathways were enriched in the low-risk group. In summary, a 4-lncRNA based risk model was identified that was associated with prognosis, which may serve as a prognosis prediction biomarker for HNSCC.
Collapse
Affiliation(s)
- Lu Xing
- School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Xiaoqian Zhang
- Department of Stomatology, Haiyuan College of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Anwei Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Institute of Stomatology, Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
15
|
Wei GG, Guo WP, Tang ZY, Li SH, Wu HY, Zhang LC. Expression level and prospective mechanism of miRNA-99a-3p in head and neck squamous cell carcinoma based on miRNA-chip and miRNA-sequencing data in 1, 167 cases. Pathol Res Pract 2019; 215:963-976. [PMID: 30904360 DOI: 10.1016/j.prp.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The role of miR-99a-3p in Head and neck squamous cell carcinoma (HNSCC) has not been reported. Therefore, in this study, we examined the expression level and its molecular mechanisms of miR-99a-3p in HNSCC. MATERIALS AND METHODS MiR-99a-3p-related miRNA-chip and miRNA-sequencing data were collected. We then carried out meta-analyses to pool the standard mean difference (SMD) value and generate a summarized receiver operating characteristic (sROC) curve. MiR-99a-3p mimic was transfected into FaDu cells and those genes influenced by miR-99a-3p were gathered. The target genes were also predicted from 12 tools through miRwalk2.0, and combined with differentially expressed genes in HNSCC from the The Cancer Genome Atlas and Genotype-Tissue Expression sequencing databases. FunRich and DAVID were used for the pathway signaling analyses for the potential targets of miR-99a-3p in HNSCC. RESULTS The SMD was -0.30 (95% CI: -0.51, -0.08) in the fixed-effect model and -0.28 (95% CI: -0.67, 0.10) in the random-effect model (I2 = 60%), indicating a reduced expression level of miR-99a-3p in HNSCC tissues based on 1167 cases. In the sROC curve, the area under the curve (AUC) was 0.77 (95% CI: 0.73, 0.81). The 251 potential targets of miR-99a-3p were enriched in several pathways related to cancer, with the "Pathways in cancer" standing at the top. vascular endothelial growth factor A was selected as an example with up-regulated trend in HNSCC tissues. CONCLUSION MiR-99a-3p exhibits a significant lower expression status in HNSCC, and this reduced or deletion status promotes the malignant progression of HNSCC. However, its molecular mechanism is still unclear and requires further investigation.
Collapse
Affiliation(s)
- Gan-Guan Wei
- Department of Otolaryngology Head and Neck Surgery, 303 Hospital of PLA Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wan-Ping Guo
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng-Yi Tang
- Department of Otolaryngology Head and Neck Surgery, 303 Hospital of PLA Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng-Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| | - Long-Cheng Zhang
- Department of Otolaryngology Head and Neck Surgery, 303 Hospital of PLA Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
16
|
Lin P, Guo YN, Shi L, Li XJ, Yang H, He Y, Li Q, Dang YW, Wei KL, Chen G. Development of a prognostic index based on an immunogenomic landscape analysis of papillary thyroid cancer. Aging (Albany NY) 2019; 11:480-500. [PMID: 30661062 PMCID: PMC6366981 DOI: 10.18632/aging.101754] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/29/2018] [Indexed: 04/24/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common subtype of thyroid cancer, and inflammation relates significantly to its initiation and prognosis. Systematic exploration of the immunogenomic landscape therein to assist in PTC prognosis is therefore urgent. The Cancer Genome Atlas (TCGA) project provides a large number of genetic PTC samples that enable a comprehensive and reliable immunogenomic study. METHODS We integrated the expression profiles of immune-related genes (IRGs) and progression-free intervals (PFIs) in survival in 493 PTC patients based on the TCGA dataset. Differentially-expressed and survival-associated IRGs in PTC patients were estimated a computational difference algorithm and COX regression analysis. The potential molecular mechanisms and properties of these PTC-specific IRGs were also explored with the help of computational biology. A new prognostic index based on immune-related genes was developed by using multivariable COX analysis. RESULTS A total of 46 differentially expressed immune-related genes were significantly correlated with clinical outcome of PTC patients. Functional enrichment analysis revealed that these genes were actively involved in a cytokine-cytokine receptor interaction KEGG pathway. A prognostic signature based on RGs (AGTR1, CTGF, FAM3B, IL11, IL17C, PTH2R and SPAG11A) performed moderately in prognostic predictions and correlated with age, tumor stage, metastasis, number of lesions, and tumor burden. Intriguingly, the prognostic index based on IRGs reflected infiltration by several types of immune cells. CONCLUSIONS Together, our results screened several IRGs of clinical significance, revealed drivers of the immune repertoire, and demonstrated the importance of a personalized, IRG-based immune signature in the recognition, surveillance, and prognosis of PTC.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Lin Shi
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiao-jiao Li
- Department of PET/CT, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Qing Li
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Kang-lai Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| |
Collapse
|