1
|
Huang WL, Hsu YC, Luo CW, Chang SJ, Hung YH, Lai CY, Yang YT, Chen YZ, Wu CC, Chen FM, Hou MF, Pan MR. Targeting the CDK7-MDK axis to suppresses irinotecan resistance in colorectal cancer. Life Sci 2024; 353:122914. [PMID: 39004275 DOI: 10.1016/j.lfs.2024.122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
AIMS Colorectal cancer (CRC) remains a major global health issue, with metastatic cases presenting poor prognosis despite advances in chemotherapy and targeted therapy. Irinotecan, a key drug for advanced CRC treatment, faces challenges owing to the development of resistance. This study aimed to understand the mechanisms underlying irinotecan resistance in colorectal cancer. MAIN METHODS We created a cell line resistant to irinotecan using HT29 cells. These resistant cells were utilized to investigate the role of the CDK7-MDK axis. We employed bulk RNA sequencing, conducted in vivo experiments with mice, and analyzed patient tissues to examine the effects of the CDK7-MDK axis on the cellular response to irinotecan. KEY FINDINGS Our findings revealed that HT29 cells resistant to irinotecan, a crucial colorectal cancer medication, exhibited significant phenotypic and molecular alterations compared to their parental counterparts, including elevated stem cell characteristics and increased levels of cytokines and drug resistance proteins. Notably, CDK7 expression was substantially higher in these resistant cells, and targeting CDK7 effectively decreased their survival and tumor growth, enhancing irinotecan sensitivity. RNA-seq analysis indicated that suppression of CDK7 in irinotecan-resistant HT29 cells significantly reduced Midkine (MDK) expression. Decreased CDK7 and MDK levels, achieved through siRNA and the CDK7 inhibitor THZ1, enhanced the sensitivity of resistant HT29 cells to irinotecan. SIGNIFICANCE Our study sheds light on how CDK7 and MDK influence irinotecan resistance in colorectal and highlights the potential of MDK-targeted therapies. We hypothesized that irinotecan sensitivity and overall treatment efficacy would improve by inhibiting MDK. This finding encourages a careful yet proactive investigation of MDK as a therapeutic target to enhance outcomes in colorectal cancer patients.
Collapse
Affiliation(s)
- Wei-Lun Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yin-Chou Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan; Department of Cosmetic Science, Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Shu-Jyuan Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Hsuan Hung
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chiao-Ying Lai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Tzu Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Zi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan; Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| |
Collapse
|
2
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
3
|
Bhutada I, Khambati F, Cheng SY, Tiek DM, Duckett D, Lawrence H, Vogelbaum MA, Mo Q, Chellappan SP, Padmanabhan J. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Neuro Oncol 2024; 26:70-84. [PMID: 37551745 PMCID: PMC10768977 DOI: 10.1093/neuonc/noad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.
Collapse
Affiliation(s)
- Isha Bhutada
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatema Khambati
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna M Tiek
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neuro-Oncology Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Hu X, Xie J, Yang Y, Qiu Z, Lu W, Lin X, Xu B. Multi-Target Neural Differentiation (MTND) Therapeutic Cocktail to Suppress Brain Tumor. Int J Mol Sci 2023; 24:12329. [PMID: 37569705 PMCID: PMC10418641 DOI: 10.3390/ijms241512329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Yilin Yang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Ziyi Qiu
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Xudong Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
5
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Tang ZC, Qu Q, Teng XQ, Zhuang HH, Xu WX, Qu J. Bibliometric analysis of evolutionary trends and hotspots of super-enhancers in cancer. Front Pharmacol 2023; 14:1192855. [PMID: 37576806 PMCID: PMC10415222 DOI: 10.3389/fphar.2023.1192855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: In the past decade, super-enhancer (SE) has become a research hotspot with increasing attention on cancer occurrence, development, and prognosis. To illustrate the hotspots of SE in cancer research and its evolutionary tendency, bibliometric analysis was carried out for this topic. Methods: Literature published before Dec 31, 2022, in WOSCC, was systematically classified, and Citespace, bibliometric.com/app, and GraphPad Prism analyzed the data. Results: After screening out inappropriate documents and duplicate data, 911 publications were selected for further bibliometric analysis. The top five research areas were Oncology (257, 28.211%), Cell Biology (210, 23.052%), Biochemistry Molecular Biology (209, 22.942%), Science Technology Other Topics (138, 15.148%), and Genetics Heredity (132, 14.490%). The United States of America (United States) has the highest number of documents (462, 50.71%), followed by China (303, 33.26%). Among the most productive institutions, four of which are from the United States and one from Singapore, the National University of Singapore. Harvard Medical School (7.68%) has the highest percentage of articles. Young, Richard A, with 32 publications, ranks first in the number of articles. The top three authors came from Whitehead Institute for Biomedical Research as a research team. More than two-thirds of the research are supported by the National Institutes of Health of the United States (337, 37.654%) and the United States Department of Health Human Services (337, 37.654%). And "super enhancer" (525), "cell identity" (258), "expression" (223), "cancer" (205), and "transcription factor" (193) account for the top 5 occurrence keywords. Discussion: Since 2013, SE and cancer related publications have shown a rapid growth trend. The United States continues to play a leading role in this field, as the top literature numbers, affiliations, funding agencies, and authors were all from the United States, followed by China and European countries. A high degree of active cooperation is evident among a multitude of countries. The role of SEs in cell identity, gene transcription, expression, and inhibition, as well as the relationship between SEs and TFs, and the selective inhibition of SEs, have received much attention, suggesting that they are hot issues for research.
Collapse
Affiliation(s)
- Zhen-Chu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Management, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
7
|
Araki S, Ohori M, Yugami M. Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities. Front Oncol 2023; 13:1152087. [PMID: 37342192 PMCID: PMC10277747 DOI: 10.3389/fonc.2023.1152087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment.
Collapse
|
8
|
Du X, Wang H, Xu J, Zhang Y, Chen T, Li G. Profiling and integrated analysis of transcriptional addiction gene expression and prognostic value in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:204676. [PMID: 37171044 PMCID: PMC10188332 DOI: 10.18632/aging.204676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/15/2023] [Indexed: 05/13/2023]
Abstract
Transcriptional dysregulation caused by genomic and epigenetic alterations in cancer is called "transcriptional addiction". Transcriptional addiction is an important pathogenic factor of tumor malignancy. Hepatocellular carcinoma (HCC) genomes are highly heterogeneous, with many dysregulated genes. Our study analyzed the possibility that transcriptional addiction-related genes play a significant role in HCC. All data sources for conducting this study were public cancer databases and tissue microarrays. We identified 38 transcriptional addiction genes, and most were differentially expressed genes. Among patients of different groups, there were significant differences in overall survival rates. Both nomogram and risk score were independent predictors of HCC outcomes. Transcriptional addiction gene expression characteristics determine the sensitivity of patients to immunotherapy, cisplatin, and sorafenib. Besides, HDAC2 was identified as an oncogene, and its expression was correlated with patient survival time. Our study conclusively demonstrated that transcriptional addiction is crucial in HCC. We provided biomarkers for predicting the prognosis of HCC patients, which can more precisely guide the patient's treatment.
Collapse
Affiliation(s)
- Xiaowei Du
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Wang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Xu
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Zhang
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingsong Chen
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Li
- Second Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhuang HH, Qu Q, Teng XQ, Dai YH, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp Mol Med 2023; 55:290-303. [PMID: 36720920 PMCID: PMC9981748 DOI: 10.1038/s12276-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional deregulation, a cancer cell hallmark, is driven by epigenetic abnormalities in the majority of brain tumors, including adult glioblastoma and pediatric brain tumors. Epigenetic abnormalities can activate epigenetic regulatory elements to regulate the expression of oncogenes. Superenhancers (SEs), identified as novel epigenetic regulatory elements, are clusters of enhancers with cell-type specificity that can drive the aberrant transcription of oncogenes and promote tumor initiation and progression. As gene regulators, SEs are involved in tumorigenesis in a variety of tumors, including brain tumors. SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. In this review, we summarized the characteristics and identification, unique organizational structures, and activation mechanisms of SEs in tumors, as well as the clinical applications related to SEs in tumor therapy and prognostication. Based on a review of the literature, we discussed the relationship between SEs and different brain tumors and potential therapeutic targets, focusing on glioblastoma.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, PR China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410007, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
10
|
Zatzman M, Fuligni F, Ripsman R, Suwal T, Comitani F, Edward LM, Denroche R, Jang GH, Notta F, Gallinger S, Selvanathan SP, Toretsky JA, Hellmann MD, Tabori U, Huang A, Shlien A. Widespread hypertranscription in aggressive human cancers. SCIENCE ADVANCES 2022; 8:eabn0238. [PMID: 36417526 PMCID: PMC9683723 DOI: 10.1126/sciadv.abn0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
Cancers are often defined by the dysregulation of specific transcriptional programs; however, the importance of global transcriptional changes is less understood. Hypertranscription is the genome-wide increase in RNA output. Hypertranscription's prevalence, underlying drivers, and prognostic significance are undefined in primary human cancer. This is due, in part, to limitations of expression profiling methods, which assume equal RNA output between samples. Here, we developed a computational method to directly measure hypertranscription in 7494 human tumors, spanning 31 cancer types. Hypertranscription is ubiquitous across cancer, especially in aggressive disease. It defines patient subgroups with worse survival, even within well-established subtypes. Our data suggest that loss of transcriptional suppression underpins the hypertranscriptional phenotype. Single-cell analysis reveals hypertranscriptional clones, which dominate transcript production regardless of their size. Last, patients with hypertranscribed mutations have improved response to immune checkpoint therapy. Our results provide fundamental insights into gene dysregulation across human cancers and may prove useful in identifying patients who would benefit from novel therapies.
Collapse
Affiliation(s)
- Matthew Zatzman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fabio Fuligni
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan Ripsman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tannu Suwal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Federico Comitani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rob Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | | | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA
| | - Matthew D. Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Doolittle WKL, Zhao L, Cheng SY. Blocking CDK7-Mediated NOTCH1-cMYC Signaling Attenuates Cancer Stem Cell Activity in Anaplastic Thyroid Cancer. Thyroid 2022; 32:937-948. [PMID: 35822558 PMCID: PMC9419935 DOI: 10.1089/thy.2022.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Anaplastic thyroid cancer (ATC) is an aggressive solid cancer in humans with few treatment options. Recent studies suggest that aberrant gene transcription could contribute to aggressive ATC progression. To test this hypothesis, we assessed if blocking cyclin-dependent protein 7 (CDK7) activity could impede ATC progression through attenuation of cancer stem cell (CSC) activity. Methods: We treated cell lines isolated from human ATC (THJ-11T and -16T) and xenograft mice induced by these cells with the CDK7 inhibitor THZ1. Through integrative transcriptome analyses we found that the NOTCH1-cMYC signaling axis was a potential target of CDK7 inhibition in ATC. To determine the regulatory action of NOTCH1-cMYC signaling in CSC maintenance, we evaluated the effect of a selective NOTCH1 inhibitor, crenigacestat, on CSC capacities in ATC. Results: THZ1 markedly inhibited proliferation of ATC cells and xenograft tumor growth by blocking cell cycle progression and inducing apoptosis. NOTCH1 was sensitive to suppressive transcription mediated by CDK7 inhibition and was highly enriched in tumorspheres from ATC cells. Treatment of ATC cells with either crenigacestat or THZ1 blocked formation of tumorspheres, decreased aldehyde dehydrogenase activity, and suppressed in vivo initiation and growth of tumors induced by ATC cells, indicating that NOTCH1 was a critical regulator of CSC activity in ATC. Furthermore, we demonstrated that cMYC was a downstream target of NOTCH1 signaling that collaboratively maintained CSC activity in ATC. Of note, genomic analysis showed that low CDK7 expression contributed to longer disease-free survival of thyroid cancer patients. Conclusions: NOTCH1 is a newly identified CSC regulator. Targeting NOTCH1-cMYC signaling is a promising therapeutic strategy for ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee Doolittle
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Li X, Dean DC, Yuan J, Temple TH, Trent JC, Rosenberg AE, Yu S, Hornicek FJ, Duan Z. Inhibition of CDK7-dependent transcriptional addiction is a potential therapeutic target in synovial sarcoma. Biomed Pharmacother 2022; 149:112888. [PMID: 35367753 DOI: 10.1016/j.biopha.2022.112888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Synovial sarcoma is typical aggressive malignant without satisfactory treatment outcome in adult series. Cyclin-dependent kinases (CDKs) in transcription have been considered promising molecular targets in cancer. Among these, CDK7 has been shown to play important roles in the pathogenesis of malignancies. However, the modulation mechanism of CDK7-regulated transcription in synovial sarcoma is unknown. In the present study, we aim to determine the expression and function of CDK7 in the transcription cycle of RNA polymerase II (RNAP II), and evaluate its prognostic and therapeutic significance in synovial sarcoma. Results showed that overexpression of CDK7 correlates with higher clinical stage and grade, and worse outcomes in clinic. High CDK7 expression was confirmed in all tested human synovial sarcoma cell lines and CDK7 was largely localized to the cell nucleus. Downregulation through siRNA or inhibition with the CDK7-targeting agent BS-181 exhibited dose-dependent cytotoxicity and prevented cell colony formation. Western blots demonstrated that inhibition of CDK7 paused transcription by a reduction of RNAP II phosphorylation. Blocking CDK7-dependent transcriptional addiction was accompanied by promotion of apoptosis. Furthermore, the CDK7-specific inhibitor reduced 3D spheroid formation and migration of synovial sarcoma. Collectively, our findings highlight the role of CDK7-dependent transcriptional addiction in human synovial sarcoma. CDK7-specific cytotoxic agents are therefore promising novel treatment options for synovial sarcoma.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, Keck School of Medicine at University of Southern California (USC), USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave, NTT 3449, Los Angeles, California, 90033, USA.
| | - Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Thomas H Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Jonathan C Trent
- Department of Medicine, Hematology & Oncology, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Andrew E Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, Florida 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Yuan J, Li X, Yu S. CDK7-dependent transcriptional addiction in bone and soft tissue sarcomas: Present and Future. Biochim Biophys Acta Rev Cancer 2022; 1877:188680. [PMID: 35051528 DOI: 10.1016/j.bbcan.2022.188680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Cancer arises from genetic alterations that invariably contribute to dysregulated transcriptional programs. These dysregulated programs establish and maintain specific cancer cell states, leading to an intensive dependence on a set of certain regulators of gene expression. The CDK7 functions as the core of transcription, and governs RNA polymerase II and the downstream oncogenes expression in cancers. CDK7 inhibition leads to reduced recruitment of super-enhancers-driven oncogenic transcription factors, and the depression of these associated oncogenes expression, which indicates the dependence of transcriptional addiction of cancers on CDK7. Given that specified oncoproteins of sarcomas commonly function at oncogenic transcription, targeting CDK7-denpendent transcriptional addiction may be of guiding significance for the treatment of sarcomas. In this review, we summarize the advances in mechanism of targeted CDK7-dependent transcriptional addiction and discuss the path ahead to potential application discovery in bone and soft tissue sarcomas, providing theoretical considerations for bio-orthogonal therapeutic strategies.
Collapse
Affiliation(s)
- Jin Yuan
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Naro C, Bielli P, Sette C. Oncogenic dysregulation of pre-mRNA processing by protein kinases: challenges and therapeutic opportunities. FEBS J 2021; 288:6250-6272. [PMID: 34092037 PMCID: PMC8596628 DOI: 10.1111/febs.16057] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.
Collapse
Affiliation(s)
- Chiara Naro
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Policlinico Universitario A. GemelliIRCCSRomeItaly
| | - Pamela Bielli
- Department of Biomedicine and PreventionUniversity of Rome Tor VergataItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| | - Claudio Sette
- Department of NeuroscienceSection of Human AnatomyCatholic University of the Sacred HeartRomeItaly
- Fondazione Santa LuciaIRCCSRomeItaly
| |
Collapse
|
15
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
16
|
Wang J, Ma X, Ma J. Identification of Four Enhancer-Associated Genes as Risk Signature for Diffuse Glioma Patients. J Mol Neurosci 2021; 72:410-419. [PMID: 34462884 DOI: 10.1007/s12031-021-01861-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/19/2021] [Indexed: 01/21/2023]
Abstract
The abnormal expressions of enhancer-associated genes have been reported to be correlated with poor prognosis of tumors, including glioblastoma (GBM). The objective of the current study is to predict prognosis by identifying enhancer-associated genes (EAGs). The profiles of genome-wide expressions of low-grade glioma (LGG) and GBM tissues in The Cancer Genome Atlas (TCGA) dataset were obtained to explore the expression patterns of EAGs in diffuse glioma. The capacity of prognosis prediction was validated by Rembrandt and GSE16011. Moreover, qPCR was utilized to confirm the effect of JQ1 and THZ1 on the EAGs. We detected 35 differentially expressed EAGs, which were predictive of overall survival. These candidate EAGs were then subjected to the multivariate cox regression analysis and were further scoped down to four signature genes, including TRAM2, SMAGP, KDELC2, and C7ORF25. A total of 662 patients were then stratified according to the expression levels of these four signature genes. The high-risk group accounted for poorer prognosis based on the Rembrandt and GSE16011 databases. The results of qPCR also demonstrated that the expression of the four EAGs could be abolished by JQ1 (bromodomain inhibitor) and THZ1 (CDK7 inhibitor) treatment. Our study not only highlights the potential role of EAGs, which can be used to improve clinical prognosis prediction in patients with diffuse glioma, but also sheds light on the specific biomarkers and therapeutic targets for diffuse glioma patients.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Ma
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
17
|
Dahl NA, Vibhakar R. Converging evidence for inhibition of transcriptional control in high-grade gliomas. Neuro Oncol 2021; 23:1225-1227. [PMID: 33984150 DOI: 10.1093/neuonc/noab112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nathan A Dahl
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Pediatric Neuro-Oncology, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Pediatric Neuro-Oncology, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
18
|
Juric V, Hudson L, Fay J, Richards CE, Jahns H, Verreault M, Bielle F, Idbaih A, Lamfers MLM, Hopkins AM, Rehm M, Murphy BM. Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death Dis 2021; 12:763. [PMID: 34344865 PMCID: PMC8333061 DOI: 10.1038/s41419-021-04050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Cathy E Richards
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Maïté Verreault
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
| | - Franck Bielle
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, the Netherlands
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Brona M Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
19
|
Abudureheman T, Xia J, Li MH, Zhou H, Zheng WW, Zhou N, Shi RY, Zhu JM, Yang LT, Chen L, Zheng L, Xue K, Qing K, Duan CW. CDK7 Inhibitor THZ1 Induces the Cell Apoptosis of B-Cell Acute Lymphocytic Leukemia by Perturbing Cellular Metabolism. Front Oncol 2021; 11:663360. [PMID: 33889549 PMCID: PMC8056175 DOI: 10.3389/fonc.2021.663360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
B-cell acute lymphocytic leukemia (B-ALL) is a malignant blood cancer that develops in children and adults and leads to high mortality. THZ1, a covalent cyclin-dependent kinase 7 (CDK7) inhibitor, shows anti-tumor effects in various cancers by inhibiting cell proliferation and inducing apoptosis. However, whether THZ1 has an inhibitory effect on B-ALL cells and the underlying mechanism remains obscure. In this study, we showed that THZ1 arrested the cell cycle of B-ALL cells in vitro in a low concentration, while inducing the apoptosis of B-ALL cells in vitro in a high concentration by activating the apoptotic pathways. In addition, RNA-SEQ results revealed that THZ1 disrupted the cellular metabolic pathways of B-ALL cells. Moreover, THZ1 suppressed the cellular metabolism and blocked the production of cellular metabolic intermediates in B-ALL cells. Mechanistically, THZ1 inhibited the cellular metabolism of B-ALL by downregulating the expression of c-MYC-mediated metabolic enzymes. However, THZ1 treatment enhanced cell apoptosis in over-expressed c-MYC B-ALL cells, which was involved in the upregulation of p53 expression. Collectively, our data demonstrated that CDK7 inhibitor THZ1 induced the apoptosis of B-ALL cells by perturbing c-MYC-mediated cellular metabolism, thereby providing a novel treatment option for B-ALL.
Collapse
Affiliation(s)
- Tuersunayi Abudureheman
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xia
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ming-Hao Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Blood Center, Shanghai, China
| | - Hang Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacology and Chemical Biology, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong-Yi Shi
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Min Zhu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ting Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Qing
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Department of Pharmacology and Chemical Biology, Shanghai Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Riess C, Irmscher N, Salewski I, Strüder D, Classen CF, Große-Thie C, Junghanss C, Maletzki C. Cyclin-dependent kinase inhibitors in head and neck cancer and glioblastoma-backbone or add-on in immune-oncology? Cancer Metastasis Rev 2021; 40:153-171. [PMID: 33161487 PMCID: PMC7897202 DOI: 10.1007/s10555-020-09940-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Cyclin-dependent kinases (CDK) control the cell cycle and play a crucial role in oncogenesis. Pharmacologic inhibition of CDK has contributed to the recent clinical approval of dual CDK4/6 inhibitors for the treatment of breast and small cell lung cancer. While the anticancer cell effects of CDK inhibitors are well-established, preclinical and early clinical studies describe additional mechanisms of action such as chemo- and radiosensitization or immune stimulation. The latter offers great potential to incorporate CDK inhibitors in immune-based treatments. However, dosing schedules and accurate timing of each combination partner need to be respected to prevent immune escape and resistance. In this review, we provide a detailed summary of CDK inhibitors in the two solid cancer types head and neck cancer and glioblastoma multiforme; it describes the molecular mechanisms of response vs. resistance and covers strategies to avoid resistance by the combination of immunotherapy or targeted therapy.
Collapse
Affiliation(s)
- Christin Riess
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Nina Irmscher
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Inken Salewski
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Daniel Strüder
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery "Otto Körner", Rostock University Medical Center, Rostock, Germany
| | - Carl-Friedrich Classen
- University Children's and Adolescents' Hospital, Rostock University Medical Center, Rostock, Germany
| | - Christina Große-Thie
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology and Palliative Care, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
21
|
Abstract
Cyclin-dependent kinase 7 (CDK7), along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs progression through the cell cycle via T-loop phosphorylation of cell cycle CDKs. CAK is also a component of the general transcription factor, TFIIH. CDK7-mediated phosphorylation of RNA polymerase II (Pol II) at active gene promoters permits transcription. Cell cycle dysregulation is an established hallmark of cancer, and aberrant control of transcriptional processes, through diverse mechanisms, is also common in many cancers. Furthermore, CDK7 levels are elevated in a number of cancer types and are associated with clinical outcomes, suggestive of greater dependence on CDK7 activity, compared with normal tissues. These findings identify CDK7 as a cancer therapeutic target, and several recent publications report selective CDK7 inhibitors (CDK7i) with activity against diverse cancer types. Preclinical studies have shown that CDK7i cause cell cycle arrest, apoptosis and repression of transcription, particularly of super-enhancer-associated genes in cancer, and have demonstrated their potential for overcoming resistance to cancer treatments. Moreover, combinations of CDK7i with other targeted cancer therapies, including BET inhibitors, BCL2 inhibitors and hormone therapies, have shown efficacy in model systems. Four CDK7i, ICEC0942 (CT7001), SY-1365, SY-5609 and LY3405105, have now progressed to Phase I/II clinical trials. Here we describe the work that has led to the development of selective CDK7i, the current status of the most advanced clinical candidates, and discuss their potential importance as cancer therapeutics, both as monotherapies and in combination settings. ClinicalTrials.gov Identifiers: NCT03363893; NCT03134638; NCT04247126; NCT03770494.
Collapse
|
22
|
Transcriptional cyclin-dependent kinases as the mediators of inflammation-a review. Gene 2020; 769:145200. [PMID: 33031895 DOI: 10.1016/j.gene.2020.145200] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to the serine/threonine kinase family, and their unique interactions with a variety of cyclin complexes influence its catalytic activity to ensure unimpaired cell cycle progression. In addition to their cell cycle regulatory roles, it is becoming increasingly clear that the CDKs can have multiple functional roles like transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions, and in spermatogenesis. Further in addition, recent reports suggest that CDKs have a remarkable regulatory role in influencing the pro-inflammatory functions of various cytokines during the clinical inflammatory responses. CDKs initiate the inflammatory responses by triggering the activity of prominent pro-inflammatory transcription factors such as nuclear factor kappa B (NF-kB), signal transducer and activator of transcription 3 (STAT3), and activator protein 1 (AP-1). The transcriptional CDKs (tCDKs) is crucial for organizing various transcription events and associated processes such as RNA capping, splicing, 3' end formation, and chromatin remodeling. Although the in-depth mechanism of certain mammalian CDKs is explored with respect to inflammation, the role of other tCDKs or any synergistic play among the members still remains unexplored. Until today, there is only supportive and palliative care available most of the inflammatory disorders, and thus it is the right time to explore novel pharmacological targets. In this regard, we focus on the pathophysiological role of CDK7, CDK8 and CDK9 and their impact on the development of inflammatory disorders within the mammals. Additionally, we discuss the potential trends of having tCDKs as a therapeutic target for fine-tuning inflammatory disorders.
Collapse
|
23
|
Epigenetic Targeting of Mcl-1 Is Synthetically Lethal with Bcl-xL/Bcl-2 Inhibition in Model Systems of Glioblastoma. Cancers (Basel) 2020; 12:cancers12082137. [PMID: 32752193 PMCID: PMC7464325 DOI: 10.3390/cancers12082137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Apoptotic resistance remains a hallmark of glioblastoma (GBM), the most common primary brain tumor in adults, and a better understanding of this process may result in more efficient treatments. By utilizing chromatin immunoprecipitation with next-generation sequencing (CHIP-seq), we discovered that GBMs harbor a super enhancer around the Mcl-1 locus, a gene that has been known to confer cell death resistance in GBM. We utilized THZ1, a known super-enhancer blocker, and BH3-mimetics, including ABT263, WEHI-539, and ABT199. Combined treatment with BH3-mimetics and THZ1 led to synergistic growth reduction in GBM models. Reduction in cellular viability was accompanied by significant cell death induction with features of apoptosis, including disruption of mitochondrial membrane potential followed by activation of caspases. Mechanistically, THZ1 elicited a profound disruption of the Mcl-1 enhancer region, leading to a sustained suppression of Mcl-1 transcript and protein levels, respectively. Mechanism experiments suggest involvement of Mcl-1 in the cell death elicited by the combination treatment. Finally, the combination treatment of ABT263 and THZ1 resulted in enhanced growth reduction of tumors without induction of detectable toxicity in two patient-derived xenograft models of GBM in vivo. Taken together, these findings suggest that combined epigenetic targeting of Mcl-1 along with Bcl-2/Bcl-xL is potentially therapeutically feasible.
Collapse
|
24
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
25
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
26
|
Kim J, Cho YJ, Ryu JY, Hwang I, Han HD, Ahn HJ, Kim WY, Cho H, Chung JY, Hewitt SM, Kim JH, Kim BG, Bae DS, Choi CH, Lee JW. CDK7 is a reliable prognostic factor and novel therapeutic target in epithelial ovarian cancer. Gynecol Oncol 2019; 156:211-221. [PMID: 31776040 DOI: 10.1016/j.ygyno.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Cyclin-dependent kinase 7 (CDK7) engages tumor growth by acting as a direct link between the regulation of transcription and the cell cycle. Here, we investigated the clinical significance of CDK7 expression and its potential as a therapeutic target in epithelial ovarian cancer (EOC). METHODS CDK7 expression was examined in 436 ovarian tissues including normal to metastatic ovarian tumors using immunohistochemistry, and its clinical implications were analyzed. Furthermore, we performed in vitro and in vivo experiments using CDK7 siRNA or a covalent CDK7 inhibitor (THZ1) to elucidate the effect of CDK7 inhibition on tumorigenesis in EOC cells. RESULTS The patient incidence of high CDK7 expression (CDK7High) gradually increased from normal ovarian epithelium to EOC (P < 0.001). Moreover, CDK7High was associated with an advanced stage and high-grade histology (P = 0.035 and P = 0.011, respectively) in EOC patients and had an independent prognostic significance in EOC recurrence (P = 0.034). CDK7 inhibition with siRNA or THZ1 decreased cell proliferation and migration, and increased apoptosis in EOC cells, and this anti-cancer mechanism is caused by G0/G1 cell cycle arrest. In in vivo therapeutic experiments using cell-line xenograft and PDX models, CDK7 inhibition significantly decreased the tumor weight, which was mediated by cell proliferation and apoptosis. CONCLUSION Mechanistic interrogation of CDK7 revealed that it is significantly associated with an aggressive phenotype of EOC, and it has independent prognostic power for EOC recurrence. Furthermore, CDK7 may be a potential therapeutic target for patients with EOC, whether platinum sensitive or resistant.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Obstetrics and Gynecology, Dankook University Hospital, Cheonan, Republic of Korea
| | - Young-Jae Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yoon Ryu
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ilseon Hwang
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA; Department of Pathology, Keimyung University School of Medicine, Dongsan Medical Center, Daegu, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 136-791, South Korea
| | - Woo Young Kim
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Hamdan FH, Johnsen SA. Perturbing Enhancer Activity in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050634. [PMID: 31067678 PMCID: PMC6563029 DOI: 10.3390/cancers11050634] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
Tight regulation of gene transcription is essential for normal development, tissue homeostasis, and disease-free survival. Enhancers are distal regulatory elements in the genome that provide specificity to gene expression programs and are frequently misregulated in cancer. Recent studies examined various enhancer-driven malignant dependencies and identified different approaches to specifically target these programs. In this review, we describe numerous features that make enhancers good transcriptional targets in cancer therapy and discuss different approaches to overcome enhancer perturbation. Interestingly, a number of approved therapeutic agents, such as cyclosporine, steroid hormones, and thiazolidinediones, actually function by affecting enhancer landscapes by directly targeting very specific transcription factor programs. More recently, a broader approach to targeting deregulated enhancer programs has been achieved via Bromodomain and Extraterminal (BET) inhibition or perturbation of transcription-related cyclin-dependent kinases (CDK). One challenge to enhancer-targeted therapy is proper patient stratification. We suggest that monitoring of enhancer RNA (eRNA) expression may serve as a unique biomarker of enhancer activity that can help to predict and monitor responsiveness to enhancer-targeted therapies. A more thorough investigation of cancer-specific enhancers and the underlying mechanisms of deregulation will pave the road for an effective utilization of enhancer modulators in a precision oncology approach to cancer treatment.
Collapse
Affiliation(s)
- Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
He Y, Long W, Liu Q. Targeting Super-Enhancers as a Therapeutic Strategy for Cancer Treatment. Front Pharmacol 2019; 10:361. [PMID: 31105558 PMCID: PMC6499164 DOI: 10.3389/fphar.2019.00361] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023] Open
Abstract
Super-enhancers (SEs) refer to large clusters of enhancers that drive gene expressions. Recent data has provided novel insights in elucidating the roles of SEs in many diseases, including cancer. Many mechanisms involved in tumorigenesis and progression, ranging from internal gene mutation and rearrangement to external damage and inducement, have been demonstrated to be highly associated with SEs. Moreover, translocation, formation, deletion, or duplication of SEs themselves could lead to tumor development. It has been reported that various oncogenic molecules and pathways are tightly regulated by SEs. Moreover, several clinical trials on novel SEs blockers, such as BET inhibitor and CDK7i, have indicated the potential roles of SEs in cancer therapy. In this review, we highlighted the underlying mechanism of action of SEs in cancer development and the corresponding novel potential therapeutic strategies. It is speculated that targeting SEs could complement the traditional approaches and lead to more effective treatment for cancer patients.
Collapse
Affiliation(s)
- Yi He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|