1
|
Ma J, Yao Z, Ma L, Zhu Q, Zhang J, Li L, Liu C. Glucose metabolism reprogramming in gynecologic malignant tumors. J Cancer 2024; 15:2627-2645. [PMID: 38577616 PMCID: PMC10988310 DOI: 10.7150/jca.91131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 04/06/2024] Open
Abstract
The incidence and mortality of gynecological tumors are progressively increasing due to factors such as obesity, viral infection, unhealthy habits, as well as social and economic pressures. Consequently, it has emerged as a significant threat to women's health. Numerous studies have revealed the remarkable metabolic activity of tumor cells in glycolysis and its ability to influence malignant biological behavior through specific mechanisms. Therefore, it is crucial for patients and gynecologists to comprehend the role of glycolytic proteins, regulatory molecules, and signaling pathways in tumorigenesis, progression, and treatment. This article aims to review the correlation between abnormal glucose metabolism and gynecologic tumors including cervical cancer (CC), endometrial carcinoma (EC), and ovarian cancer (OC). The findings from this research will provide valuable scientific insights for early screening, timely diagnosis and treatment interventions while also aiding in the prevention of recurrence among individuals with gynecological tumors.
Collapse
Affiliation(s)
- Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Zhiqiang Yao
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Liangjian Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Qinyin Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Jiajia Zhang
- Department of Child Health, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
2
|
Li J, Yang H, Zhang L, Zhang S, Dai Y. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother 2023; 161:114526. [PMID: 36933381 DOI: 10.1016/j.biopha.2023.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer cells are usually featured by metabolic adaptations that facilitate their growth, invasion, and metastasis. Thus, reprogramming of intracellular energy metabolism is currently one of the hotspots in the field of cancer research. Whereas aerobic glycolysis (known as the Warburg effect) has long been considered a dominant form of energy metabolism in cancer cells, emerging evidence indicates that other metabolic forms, especially oxidative phosphorylation (OXPHOS), may play a critical role at least in some types of cancer. Of note, women with metabolic syndromes (MetS), including obesity, hyperglycemia, dyslipidemia, and hypertension, have an increased risk of developing endometrial carcinoma (EC), suggesting a close link between metabolism and EC. Interestingly, the metabolic preferences vary among EC cell types, particularly cancer stem cells and chemotherapy-resistant cells. Currently, it is commonly accepted that glycolysis is the main energy provider in EC cells, while OXPHOS is reduced or impaired. Moreover, agents specifically targeting the glycolysis and/or OXPHOS pathways can inhibit tumor cell growth and promote chemosensitization. For example, metformin and weight control not only reduce the incidence of EC but also improve the prognosis of EC patients. In this review, we comprehensively overview the current in-depth understanding of the relationship between metabolism and EC and provide up-to-date insights into the development of novel therapies targeting energy metabolism for auxiliary treatment in combination with chemotherapy for EC, especially those resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Hongmei Yang
- Department of Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Lingyi Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Songling Zhang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China.
| | - Yun Dai
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
3
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Bononi G, Tuccinardi T, Rizzolio F, Granchi C. α/β-Hydrolase Domain (ABHD) Inhibitors as New Potential Therapeutic Options against Lipid-Related Diseases. J Med Chem 2021; 64:9759-9785. [PMID: 34213320 PMCID: PMC8389839 DOI: 10.1021/acs.jmedchem.1c00624] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Much of the experimental evidence in the literature has linked altered lipid metabolism to severe diseases such as cancer, obesity, cardiovascular pathologies, diabetes, and neurodegenerative diseases. Therefore, targeting key effectors of the dysregulated lipid metabolism may represent an effective strategy to counteract these pathological conditions. In this context, α/β-hydrolase domain (ABHD) enzymes represent an important and diversified family of proteins, which are involved in the complex environment of lipid signaling, metabolism, and regulation. Moreover, some members of the ABHD family play an important role in the endocannabinoid system, being designated to terminate the signaling of the key endocannabinoid regulator 2-arachidonoylglycerol. This Perspective summarizes the research progress in the development of ABHD inhibitors and modulators: design strategies, structure-activity relationships, action mechanisms, and biological studies of the main ABHD ligands will be highlighted.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
5
|
Yu L, Li Y, Grisé A, Wang H. CGI-58: Versatile Regulator of Intracellular Lipid Droplet Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:197-222. [PMID: 32705602 PMCID: PMC8063591 DOI: 10.1007/978-981-15-6082-8_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Comparative gene identification-58 (CGI-58), also known as α/β-hydrolase domain-containing 5 (ABHD5), is a member of a large family of proteins containing an α/β-hydrolase-fold. CGI-58 is well-known as the co-activator of adipose triglyceride lipase (ATGL), which is a key enzyme initiating cytosolic lipid droplet lipolysis. Mutations in either the human CGI-58 or ATGL gene cause an autosomal recessive neutral lipid storage disease, characterized by the excessive accumulation of triglyceride (TAG)-rich lipid droplets in the cytoplasm of almost all cell types. CGI-58, however, has ATGL-independent functions. Distinct phenotypes associated with CGI-58 deficiency commonly include ichthyosis (scaly dry skin), nonalcoholic steatohepatitis, and hepatic fibrosis. Through regulated interactions with multiple protein families, CGI-58 controls many metabolic and signaling pathways, such as lipid and glucose metabolism, energy balance, insulin signaling, inflammatory responses, and thermogenesis. Recent studies have shown that CGI-58 regulates the pathogenesis of common metabolic diseases in a tissue-specific manner. Future studies are needed to molecularly define ATGL-independent functions of CGI-58, including the newly identified serine protease activity of CGI-58. Elucidation of these versatile functions of CGI-58 may uncover fundamental cellular processes governing lipid and energy homeostasis, which may help develop novel approaches that counter against obesity and its associated metabolic sequelae.
Collapse
Affiliation(s)
- Liqing Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yi Li
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grisé
- College of Computer, Math, and Natural Sciences, College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| | - Huan Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Yang X, Wang J. The Role of Metabolic Syndrome in Endometrial Cancer: A Review. Front Oncol 2019; 9:744. [PMID: 31440472 PMCID: PMC6694738 DOI: 10.3389/fonc.2019.00744] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Endometrial cancer is one of the most common cancers of the female reproductive system. Although surgery, radiotherapy, chemotherapy, and hormone therapy can significantly improve the survival of patients, the treatment of patients with very early lesions and a strong desire to retain reproductive function or late recurrence is still in the early stages. Metabolic syndrome (MS) is a clustering of at least three of the five following medical conditions: central obesity, high blood pressure, high blood sugar, high serum triglycerides, and low serum high-density lipoprotein (HDL). Obesity, diabetes and hypertension often coexist in patients with endometrial cancer, which increases the risk of endometrial cancer, also known as the "triple syndrome of endometrial cancer." In recent years, epidemiological and clinical studies have found that MS associated with metabolic diseases is closely related to the incidence of endometrial cancer. However, the key molecular mechanisms underlying the induction of endometrial cancer by MS have not been elucidated to date. Characterizing the tumor metabolism microenvironment will be advantageous for achieving a comprehensive view of the molecular mechanism of metabolic syndrome associated with endometrial cancer and for providing a new target for the treatment of endometrial cancer. This review focuses on recent advances in determining the role of metabolic syndrome-related factors and mechanisms in the pathogenesis of endometrial cancer. We suggest that interfering with the tumor metabolic microenvironment-related molecular signals may inhibit the occurrence of endometrial cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| |
Collapse
|