1
|
Cai Y, Jiang S, Huang C, Shen A, Zhang X, Yang W, Xiao Y, Gao S, Du R, Zheng G, Yan T, Craig Wan C. Baicalin inhibits pressure overload-induced cardiac hypertrophy by regulating the SIRT3-dependent signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154747. [PMID: 36931095 DOI: 10.1016/j.phymed.2023.154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The conserved sirtuin protein sirtuin 3 (SIRT3) is a vital protective protein for cardiac hypertrophy. Inhibition of SIRT3 accelerated the development of heart hypertrophy. On the other hand, myocardial hypertrophy was prevented by overexpressing SIRT3. SIRT3 has been proposed as a potential therapeutic target for managing or averting heart hypertrophy. Baicalin, a flavonoid extracted from the Scutellaria baicalensis plant, has anti-cardiovascular properties, including protection against cardiac hypertrophy. However, the molecular mechanism of the anti-hypertrophic effect of baicalin is not well known. PURPOSE In this study, we aim to investigate the effect of baicalin on cardiac hypertrophy and explored its underlying molecular mechanisms. STUDY-DESIGN/METHODS Abdominal aortic constriction (AAC)-induced mouse cardiac hypertrophy and angiotensin II (Ang II)-induced cardiomyocyte hypertrophy models were established. After baicalin treatment, cardiac hypertrophy was monitored by detecting the expression of hypertrophic genes and cell surface area. Echocardiogram was performed to check the heart function in vivo. Moreover, the protein expression of the SIRT3-dependent pathway was detected by Western blotting. RESULTS In this work, we demonstrated that baicalin might suppress the cell surface area and the expression of the Ang II -induced myosin heavy chain β (β-MHC), brain natriuretic polypeptide (BNP), and atrial natriuretic factor (ANF). Additionally, it reduced the AAC rats' hypertrophic impact. We also found that baicalin prevents cardiac hypertrophy by regulating SIRT3/LKB1/AMPK signaling pathway. Moreover, we showed that baicalin upregulated the SIRT3 protein expression by inhibiting proteasome and by the activation of 20 S proteasome subunit beta type-5 (PSMB5). CONCLUSION These results offer the first proof that baicalin inhibits cardiac hypertrophy due to its effect on the SIRT3-dependent signaling pathway, indicating its potential for treating cardiac hypertrophy and heart failure. The present study provides a preliminary experimental basis for the clinical application of baicalin and baicalin-like compounds.
Collapse
Affiliation(s)
- Yi Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shisheng Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wanling Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yichuan Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Rong Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Ishii K, Hido M, Sakamura M, Virgona N, Yano T. α-Tocotrienol and Redox-Silent Analogs of Vitamin E Enhances Bortezomib Sensitivity in Solid Cancer Cells through Modulation of NFE2L1. Int J Mol Sci 2023; 24:ijms24119382. [PMID: 37298331 DOI: 10.3390/ijms24119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Proteasome inhibitors (PIs) have emerged as an attractive novel cancer therapy. However, most solid cancers are seemingly resistant to PIs. The activation of transcription factor Nuclear factor erythroid 2 related factor-1 (NFE2L1) has been characterized as a potential resistance response to protect and restore proteasome activity in cancer cells. In this study, we demonstrated that α-Tocotrienol (T3) and redox-silent analogs of vitamin E (TOS, T3E) enhanced the sensitivity of bortezomib (BTZ), a proteasome inhibitor, in solid cancers through modulation of NFE2L1. In BTZ treatment, all of T3, TOS, and T3E inhibited an increase in the protein levels of NFE2L1, the expression levels of proteasome-related proteins, as well as the recovery of proteasome activity. Moreover, the combination of one of T3, TOS, or T3E and BTZ induced a significant decrease in cell viability in solid cancer cell lines. These findings suggested that the inactivation of NFE2L1 by T3, TOS, and T3E is essential to potentiate the cytotoxic effect of the proteasome inhibitor, BTZ, in solid cancers.
Collapse
Affiliation(s)
- Kyota Ishii
- Laboratory of Molecular Bromacology, Graduate School of Sports Health, Toyo University, Akabane City 115-8650, Japan
| | - Mayuko Hido
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Misaki Sakamura
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Nantiga Virgona
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| |
Collapse
|
3
|
Benvenuto M, Angiolini V, Focaccetti C, Nardozi D, Palumbo C, Carrano R, Rufini A, Bei R, Miele MT, Mancini P, Barillari G, Cirone M, Ferretti E, Tundo GR, Mutti L, Masuelli L, Bei R. Antitumoral effects of Bortezomib in malignant mesothelioma: evidence of mild endoplasmic reticulum stress in vitro and activation of T cell response in vivo. Biol Direct 2023; 18:17. [PMID: 37069690 PMCID: PMC10111665 DOI: 10.1186/s13062-023-00374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a rare tumor with a dismal prognosis. The low efficacy of current treatment options highlights the urge to identify more effective therapies aimed at improving MM patients' survival. Bortezomib (Bor) is a specific and reversible inhibitor of the chymotrypsin-like activity of the 20S core of the proteasome, currently approved for the treatment of multiple myeloma and mantle cell lymphoma. On the other hand, Bor appears to have limited clinical effects on solid tumors, because of its low penetration and accumulation into tumor tissues following intravenous administration. These limitations could be overcome in MM through intracavitary delivery, with the advantage of increasing local drug concentration and decreasing systemic toxicity. METHODS In this study, we investigated the effects of Bor on cell survival, cell cycle distribution and modulation of apoptotic and pro-survival pathways in human MM cell lines of different histotypes cultured in vitro. Further, using a mouse MM cell line that reproducibly forms ascites when intraperitoneally injected in syngeneic C57BL/6 mice, we investigated the effects of intraperitoneal Bor administration in vivo on both tumor growth and the modulation of the tumor immune microenvironment. RESULTS We demonstrate that Bor inhibited MM cell growth and induced apoptosis. Further, Bor activated the Unfolded Protein Response, which however appeared to participate in lowering cells' sensitivity to the drug's cytotoxic effects. Bor also affected the expression of EGFR and ErbB2 and the activation of downstream pro-survival signaling effectors, including ERK1/2 and AKT. In vivo, Bor was able to suppress MM growth and extend mice survival. The Bor-mediated delay of tumor progression was sustained by increased activation of T lymphocytes recruited to the tumor microenvironment. CONCLUSIONS The results presented herein support the use of Bor in MM and advocate future studies aimed at defining the therapeutic potential of Bor and Bor-based combination regimens for this treatment-resistant, aggressive tumor.
Collapse
Affiliation(s)
- Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Rufini
- Saint Camillus International, University of Health and Medical Sciences, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Riccardo Bei
- Medical School, University of Rome "Tor Vergata", Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luciano Mutti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
4
|
Upregulated Proteasome Subunits in COVID-19 Patients: A Link with Hypoxemia, Lymphopenia and Inflammation. Biomolecules 2022; 12:biom12030442. [PMID: 35327634 PMCID: PMC8946050 DOI: 10.3390/biom12030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Severe COVID-19 disease leads to hypoxemia, inflammation and lymphopenia. Viral infection induces cellular stress and causes the activation of the innate immune response. The ubiquitin-proteasome system (UPS) is highly implicated in viral immune response regulation. The main function of the proteasome is protein degradation in its active form, which recognises and binds to ubiquitylated proteins. Some proteasome subunits have been reported to be upregulated under hypoxic and hyperinflammatory conditions. Here, we conducted a prospective cohort study of COVID-19 patients (n = 44) and age-and sex-matched controls (n = 20). In this study, we suggested that hypoxia could induce the overexpression of certain genes encoding for subunits from the α and β core of the 20S proteasome and from regulatory particles (19S and 11S) in COVID-19 patients. Furthermore, the gene expression of proteasome subunits was associated with lymphocyte count reduction and positively correlated with inflammatory molecular and clinical markers. Given the importance of the proteasome in maintaining cellular homeostasis, including the regulation of the apoptotic and pyroptotic pathways, these results provide a potential link between COVID-19 complications and proteasome gene expression.
Collapse
|
5
|
Ishii K, Fusegi M, Mori T, Teshima K, Ninomiya N, Kohno K, Sato A, Ishida T, Miyakoshi Y, Yano T. A Redox-Silent Analogue of Tocotrienol May Break the Homeostasis of Proteasomes in Human Malignant Mesothelioma Cells by Inhibiting STAT3 and NRF1. Int J Mol Sci 2022; 23:ijms23052655. [PMID: 35269802 PMCID: PMC8910454 DOI: 10.3390/ijms23052655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
6-O-Carboxypropyl-alpha-tocotrienol (α-T3E) is a multi-target redox-silent analogue of tocotrienol that exhibits cytotoxicity against many cancer cells, including malignant mesothelioma (MM) cells. α-T3E has several molecular targets to effectively induce cytotoxicity against MM cells; however, the mechanisms underlying this cytotoxicity remain unclear. In the present study, we demonstrated that the α-T3E-dependent disruption of the homeostasis of proteasomes strongly induced endoplasmic reticulum (ER) stress, which resulted in effective cytotoxicity against MM cells. The α-T3E-dependent disruption of the homeostasis of proteasomes depended on decreases in proteasome subunits via the inactivation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid 2 related factor-1 (NRF1), which inhibited protease activity, such as chymotrypsin-like activity, in proteasomes. The α-T3E-dependent inhibition of this activity also induced severe ER stress and ultimately resulted in effective cytotoxicity against MM cells with chemoresistance. The present results indicate that α-T3E acts as an effective anti-mesothelioma agent by disrupting the homeostasis of proteasomes through the simultaneous inactivation of STAT3 and NRF1.
Collapse
Affiliation(s)
- Kyota Ishii
- Laboratory of Molecular Bromacology, Graduate School of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.I.); (M.F.)
| | - Momoka Fusegi
- Laboratory of Molecular Bromacology, Graduate School of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.I.); (M.F.)
| | - Tatsuki Mori
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Kosuke Teshima
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Nanako Ninomiya
- Department of Food and Life Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (T.M.); (K.T.); (N.N.)
| | - Kakeru Kohno
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Ayami Sato
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Tatsuya Ishida
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Yuichi Miyakoshi
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Oura District, Gunma, Itakura Town 374-0193, Japan; (K.K.); (A.S.); (T.I.); (Y.M.)
- Correspondence: ; Tel./Fax: +81-276-82-9143
| |
Collapse
|
6
|
Salaroglio IC, Belisario DC, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, Fontana S, Napoli F, Sandri A, Facolmatà C, Libener R, Comunanza V, Grosso F, Gazzano E, Leo F, Taulli R, Bussolino F, Righi L, Papotti MG, Novello S, Scagliotti GV, Riganti C, Kopecka J. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:75. [PMID: 35197103 PMCID: PMC8864928 DOI: 10.1186/s13046-022-02284-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Background The combination of pemetrexed and cisplatin remains the reference first-line systemic therapy for malignant pleural mesothelioma (MPM). Its activity is moderate because of tumor aggressiveness, immune-suppressive environment and resistance to chemotherapy-induced immunogenic cell death (ICD). Preliminary and limited findings suggest that MPM cells have deregulated ubiquitination and proteasome activities, although proteasome inhibitors achieved disappointing clinical results. Methods Here, we investigated the role of the E3-ubiquitin ligase SKP/Cullin/F-box (SCF) complex in cell cycle progression, endoplasmic reticulum (ER)/proteostatic stress and ICD in MPM, and the therapeutic potential of the neddylation/SCF complex inhibitor MLN4924/Pevonedistat. Results In patient-derived MPM cultures and syngenic murine models, MLN4924 and cisplatin showed anti-tumor effects, regardless of MPM histotype and BAP1 mutational status, increasing DNA damage, inducing S- and G2/M-cell cycle arrest, and apoptosis. Mechanistically, by interfering with the neddylation of cullin-1 and ubiquitin-conjugating enzyme UBE2M, MLN4924 blocks the SCF complex activity and triggers an ER stress-dependent ICD, which activated anti-MPM CD8+T-lymphocytes. The SKP2 component of SCF complex was identified as the main driver of sensitivity to MLN4924 and resistance to cisplatin. These findings were confirmed in a retrospective MPM patient series, where SKP2 high levels were associated with a worse response to platinum-based therapy and inferior survival. Conclusions We suggest that the combination of neddylation inhibitors and cisplatin could be worth of further investigation in the clinical setting for MPM unresponsive to cisplatin. We also propose SKP2 as a new stratification marker to determine the sensitivity to cisplatin and drugs interfering with ubiquitination/proteasome systems in MPM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02284-7.
Collapse
Affiliation(s)
| | | | - Paolo Bironzo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | | | - Luisa Ricci
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Present address: IRCCS San Raffaele Hospital DIBIT, 20132, Milano, Italy
| | - Sabrina Digiovanni
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Simona Fontana
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Francesca Napoli
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Pathology Unit, San Luigi Hospital, University of Torino, Orbassano, Italy
| | | | - Chiara Facolmatà
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.,Present address: German Cancer Research Center (DKFZ) and Technical University Munich, 81675, Munich, Germany
| | - Roberta Libener
- Department of Integrated Activities Research and Innovation, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Federica Grosso
- Oncology Division, S. Antonio and Biagio Hospital, Alessandria, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy.,Present address: Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Francesco Leo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Thoracic Surgery Division, San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Luisella Righi
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Pathology Unit, San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mauro Giulio Papotti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy.,Pathology Unit, City of Health and Science University Hospital, Torino, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio Vittorio Scagliotti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy.,Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy. .,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126, Torino, Italy. .,Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy.
| |
Collapse
|
7
|
Brcic L, Mathilakathu A, Walter RFH, Wessolly M, Mairinger E, Beckert H, Kreidt D, Steinborn J, Hager T, Christoph DC, Kollmeier J, Mairinger T, Wohlschlaeger J, Schmid KW, Borchert S, Mairinger FD. Digital Gene Expression Analysis of Epithelioid and Sarcomatoid Mesothelioma Reveals Differences in Immunogenicity. Cancers (Basel) 2021; 13:1761. [PMID: 33917061 PMCID: PMC8067687 DOI: 10.3390/cancers13081761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with asbestos exposure. Median survival ranges from 14 to 20 months after initial diagnosis. As of November 2020, the FDA approved a combination of immune checkpoint inhibitors after promising intermediate results. Nonetheless, responses remain unsatisfying. Adequate patient stratification to improve response rates is still lacking. This retrospective study analyzed formalin fixed paraffin embedded specimens from a cohort of 22 MPM. Twelve of those samples showed sarcomatoid, ten epithelioid differentiation. Complete follow-up, including radiological assessment of response by modRECIST and time to death, was available with reported deaths of all patients. RNA of all samples was isolated and subjected to digital gene expression pattern analysis. Our study revealed a notable difference between epithelioid and sarcomatoid mesothelioma, showing differential gene expression for 304/698 expressed genes. Whereas antigen processing and presentation to resident cytotoxic T cells as well as phagocytosis is highly affected in sarcomatoid mesothelioma, cell-cell interaction via cytokines seems to be of greater importance in epithelioid cases. Our work reveals the specific role of the immune system within the different histologic subtypes of MPM, providing a more detailed background of their immunogenic potential. This is of great interest regarding therapeutic strategies including immunotherapy in mesothelioma.
Collapse
Affiliation(s)
- Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Robert F. H. Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, 45239 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Daniel C. Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, 45136 Essen, Germany;
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Fabian D. Mairinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
8
|
Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021; 25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiaqing Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
9
|
Xu D, Yang H, Schmid RA, Peng RW. Therapeutic Landscape of Malignant Pleural Mesothelioma: Collateral Vulnerabilities and Evolutionary Dependencies in the Spotlight. Front Oncol 2020; 10:579464. [PMID: 33072611 PMCID: PMC7538645 DOI: 10.3389/fonc.2020.579464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven by pharmacologically intractable tumor suppressor proteins. A significant but largely unmet challenge in the field is the translation of genetic information on alterations in tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion that abnormal tumor genome subverts physiological cellular processes, which creates collateral vulnerabilities contextually related to specific genetic alterations, offers a promising strategy to target TSG-driven MPM. Moreover, emerging evidence has increasingly appreciated the therapeutic potential of genetic and pharmacological dependencies acquired en route to cancer development and drug resistance. Here, we review the most recent progress on vulnerabilities co-selected by functional loss of major TSGs and dependencies evolving out of cancer development and resistance to cisplatin based chemotherapy, the only first-line regimen approved by the US Food and Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate therapeutic landscape and may promote precision oncology for MPM.
Collapse
Affiliation(s)
- Duo Xu
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|