1
|
Huang Y, Huang S, Zhang XF, Ou-Yang L, Liu C. NJGCG: A node-based joint Gaussian copula graphical model for gene networks inference across multiple states. Comput Struct Biotechnol J 2024; 23:3199-3210. [PMID: 39263209 PMCID: PMC11388165 DOI: 10.1016/j.csbj.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Inferring the interactions between genes is essential for understanding the mechanisms underlying biological processes. Gene networks will change along with the change of environment and state. The accumulation of gene expression data from multiple states makes it possible to estimate the gene networks in various states based on computational methods. However, most existing gene network inference methods focus on estimating a gene network from a single state, ignoring the similarities between networks in different but related states. Moreover, in addition to individual edges, similarities and differences between different networks may also be driven by hub genes. But existing network inference methods rarely consider hub genes, which affects the accuracy of network estimation. In this paper, we propose a novel node-based joint Gaussian copula graphical (NJGCG) model to infer multiple gene networks from gene expression data containing heterogeneous samples jointly. Our model can handle various gene expression data with missing values. Furthermore, a tree-structured group lasso penalty is designed to identify the common and specific hub genes in different gene networks. Simulation studies show that our proposed method outperforms other compared methods in all cases. We also apply NJGCG to infer the gene networks for different stages of differentiation in mouse embryonic stem cells and different subtypes of breast cancer, and explore changes in gene networks across different stages of differentiation or different subtypes of breast cancer. The common and specific hub genes in the estimated gene networks are closely related to stem cell differentiation processes and heterogeneity within breast cancers.
Collapse
Affiliation(s)
- Yun Huang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Sen Huang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
| | - Le Ou-Yang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Chen Liu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
2
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhao L, Biswas S, Li Y, Sooranna SR. The emerging roles of LINC00511 in breast cancer development and therapy. Front Oncol 2024; 14:1429262. [PMID: 39206156 PMCID: PMC11349568 DOI: 10.3389/fonc.2024.1429262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer (BC) is associated with malignant tumors in women worldwide with persistently high incidence and mortality rates. The traditional therapies including surgery, chemotherapy, radiotherapy and targeted therapy have certain therapeutic effects on BC patients, but acquired drug resistance can lead to tumor recurrence and metastasis. This remains a clinical challenge that is difficult to solve during treatment. Therefore, continued research is needed to identify effective targets and treatment methods, to ultimately implement personalized treatment strategies. Several studies have implicated that the long non-coding RNA LINC00511 is closely linked to the occurrence, development and drug resistance of BC. Here we will review the structure and the mechanisms of action of lnc RNA LINC00511 in various cancers, and then explore its expression and its related regulatory mechanisms during BC. In addition, we will discuss the biological functions and the potential clinical applications of LINC00511 in BC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Faculty of Medicine, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Sangita Biswas
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Yepeng Li
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
- Life Science and Clinical Research Center, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Fu W, Liu L, Tong S. Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA. Thorac Cancer 2024; 15:1357-1368. [PMID: 38709912 PMCID: PMC11168909 DOI: 10.1111/1759-7714.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid from Coptidis rhizoma, has been found to have powerful activities against various human malignancies, including breast cancer. However, the underlying antitumor mechanisms of BBR in breast cancer remain poorly understood. METHODS Breast cancer cells were cultured and treated with different doses (0, 20, 40, and 60 μM) of BBR for 48 h. Cell viability, proliferation, apoptosis, invasion, and migration were assessed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and wound healing assays. Fibroblast growth factor 7 (FGF7), methyltransferase-like 3 (METTL3), and insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) mRNA levels and protein levels were measured using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. Interaction between METTL3 and FGF7 m6A was assessed using methylated RNA immunoprecipitation (MeRIP)-qPCR and RNA immunoprecipitation (RIP) assay. Binding ability between IGF2BP3 and FGF7 mRNA was analyzed using RIP assay. RESULTS BBR treatment hindered breast cancer cell proliferation, invasion, migration, and induced apoptosis. FGF7 expression was upregulated in breast cancer tissues, while its level was reduced in BBR-treated tumor cells. FGF7 upregulation relieved the repression of BBR on breast cancer cell malignant behaviors. In mechanism, METTL3 stabilized FGF7 mRNA through the m6A-IGF2BP3-dependent mechanism and naturally improved FGF7 expression. BBR treatment inhibited breast cancer growth in vivo. CONCLUSION BBR treatment blocked breast cancer cell growth and metastasis partly by regulating METTL3-mediated m6A modification of FGF7 mRNA, providing a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Wei Fu
- Department of PharmacyPeople's Hospital of Dongxihu DistrictWuhanChina
| | - Lixin Liu
- Department of EmergencyPeople's Hospital of Dongxihu DistrictWuhanChina
| | - Suiju Tong
- Department of PharmacyPeople's Hospital of Dongxihu DistrictWuhanChina
| |
Collapse
|
5
|
Yang L, Wang M, Wang Y, Zhu Y, Wang J, Wu M, Guo Q, Han X, Pandey V, Wu Z, Lobie PE, Zhu T. LINC00460-FUS-MYC feedback loop drives breast cancer metastasis and doxorubicin resistance. Oncogene 2024; 43:1249-1262. [PMID: 38418543 DOI: 10.1038/s41388-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/01/2024]
Abstract
Therapeutic resistance and metastasis largely contribute to mortality from breast cancer and therefore understanding the underlying mechanisms of such remains an urgent challenge. By cross-analysis of TCGA and GEO databases, LINC00460 was identified as an oncogenic long non-coding RNA, highly expressed in Doxorubicin resistant breast cancer. LINC00460 was further demonstrated to promote stem cell-like and epithelial-mesenchymal transition (EMT) characteristics in breast cancer cells. LINC00460 interacts with FUS protein with consequent enhanced stabilization, which further promotes MYC mRNA maturation. LINC00460 expression was transcriptionally enhanced by c-MYC protein, forming a positive feedback loop to promote metastasis and Doxorubicin resistance. LINC00460 depletion in Doxorubicin-resistant breast cancer cells restored sensitivity to Doxorubicin and increased the efficacy of c-MYC inhibitor therapy. Collectively, these findings implicate LINC00460 as a promising prognostic biomarker and potential therapeutic target to overcome Doxorubicin resistance in breast cancer.
Collapse
Affiliation(s)
- Leiyan Yang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Miaomiao Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ya Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310000, Zhejiang, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, Anhui, China
| | - Jiarui Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Mingming Wu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qianying Guo
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Ding L, Jiang H, Li Q, Li Q, Zhang TT, Shang L, Xie B, Zhu Y, Ding K, Shi X, Zhu T, Zhu Y. Ropivacaine as a novel AKT1 specific inhibitor regulates the stemness of breast cancer. J Exp Clin Cancer Res 2024; 43:90. [PMID: 38523299 PMCID: PMC10962119 DOI: 10.1186/s13046-024-03016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Ropivacaine, a local anesthetic, exhibits anti-tumor effects in various cancer types. However, its specific functions and the molecular mechanisms involved in breast cancer cell stemness remain elusive. METHODS The effects of ropivacaine on breast cancer stemness were investigated by in vitro and in vivo assays (i.e., FACs, MTT assay, mammosphere formation assay, transwell assays, western blot, and xenograft model). RNA-seq, bioinformatics analysis, Western blot, Luciferase reporter assay, and CHIP assay were used to explore the mechanistic roles of ropivacaine subsequently. RESULTS Our study showed that ropivacaine remarkably suppressed stem cells-like properties of breast cancer cells both in vitro and in vivo. RNA-seq analysis identified GGT1 as the downstream target gene responding to ropivacaine. High GGT1 levels are positively associated with a poor prognosis in breast cancer. Ropivacaine inhibited GGT1 expression by interacting with the catalytic domain of AKT1 directly to impair its kinase activity with resultant inactivation of NF-κB. Interestingly, NF-κB can bind to the promoter region of GGT1. KEGG and GSEA analysis indicated silence of GGT1 inhibited activation of NF-κB signaling pathway. Depletion of GGT1 diminished stem phenotypes of breast cancer cells, indicating the formation of NF-κB /AKT1/GGT1/NF-κB positive feedback loop in the regulation of ropivacaine-repressed stemness in breast cancer cells. CONCLUSION Our finding revealed that local anesthetic ropivacaine attenuated breast cancer stemness through AKT1/GGT1/NF-κB signaling pathway, suggesting the potential clinical value of ropivacaine in breast cancer treatment.
Collapse
Affiliation(s)
- Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hui Jiang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiangwei Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Qiushuang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Tian-Tian Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Limeng Shang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bin Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yaling Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xuanming Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Tao Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Feng S, Ding B, Dai Z, Yin H, Ding Y, Liu S, Zhang K, Lin H, Xiao Z, Shen Y. Cancer-associated fibroblast-secreted FGF7 as an ovarian cancer progression promoter. J Transl Med 2024; 22:280. [PMID: 38491511 PMCID: PMC10941588 DOI: 10.1186/s12967-024-05085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhu Dai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yin
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yue Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Sicong Liu
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ke Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Chen C, Wang N, Huang T, Cheng G, Hu Y, Wang B, Zhang Y, Wang C. Chloroprocaine antagonizes progression of breast cancer by regulating LINC00494/miR-3619-5p/MED19 axis. J Biochem Mol Toxicol 2024; 38:e23524. [PMID: 37650745 DOI: 10.1002/jbt.23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer, as the most prevalent female malignancy, leads the cancer-related death in women worldwide. Local anesthetic chloroprocaine exhibits antitumor potential, but its specific functions and underlying molecular mechanisms in breast cancer remain unclear. Here, we demonstrated chloroprocaine significantly inhibited proliferation, invasion and induced apoptosis of breast cancer cells in vitro. Tumor growth and pulmonary metastasis were also suppressed in BABL/c nude mice model with chloroprocaine treatment. LINC00494 was identified as one of the most downregulated long noncoding RNAs in chloroprocaine-treated breast cancer cells by high-throughput sequencing. Futhermore, high level of LINC00494 was positively associated with poor outcome of breast cancer patients. LINC00494 acted as a "miRNAs sponge" to compete with MED19 for the biding of miR-3619-5p, led to the upregulation of MED19. LINC00494/miR-3619-5p/MED19 axis participated in chloroprocaine-mediated inhibition of proliferation, invasion and promotion of apoptosis of breast cancer cells. Consequently, our finding suggested local anesthetic chloroprocaine attenuated breast cancer aggressiveness through LINC00494-mediated signaling pathway, which detailly revealed the clinical value of chloroprocaine during breast cancer treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Ning Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Huang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
9
|
Zheng Y, Wu S, Huang X, Luo L. Ferroptosis-Related lncRNAs Act as Novel Prognostic Biomarkers in the Gastric Adenocarcinoma Microenvironment, Immunotherapy, and Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9598783. [PMID: 37251440 PMCID: PMC10219779 DOI: 10.1155/2023/9598783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Ferroptosis, a form of programmed cell death akin to necrosis, is managed by iron and is distinguished by lipid peroxidation. Gastric cancer is a highly aggressive form of cancer, responsible for the third highest number of cancer-related deaths globally. Despite this, the potential of ferroptosis to predict the occurrence of this cancer is yet to be determined. In this research, a comprehensive examination was conducted to explore the link between long noncoding RNAs (lncRNAs) and ferroptosis, in order to uncover an lncRNA signature that can predict drug susceptibility and tumor mutational burden (TMB) in gastric adenocarcinoma. We conducted an in-depth analysis of the GC immune microenvironment and immunotherapy, with a particular focus on ferroptosis-related lncRNA prognostic biomarkers, and further explored the correlation between these factors and prognosis, immune infiltration, single nucleotide variation (SNV), and drug sensitivity for gastric adenocarcinoma patients. Through our investigations, we have discovered five lncRNA signatures related to ferroptosis that can accurately forecast the prognosis of gastric adenocarcinoma patients and also regulate the proliferation, migration, and occurrence of ferroptosis in gastric adenocarcinoma cells. In conclusion, this lncRNA signature associated with ferroptosis may be employed as a prognostic indicator for gastric adenocarcinoma, thus presenting a potential solution.
Collapse
Affiliation(s)
- Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xueshan Huang
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
10
|
Kashyap D, Sharma R, Goel N, Buttar HS, Garg VK, Pal D, Rajab K, Shaikh A. Coding roles of long non-coding RNAs in breast cancer: Emerging molecular diagnostic biomarkers and potential therapeutic targets with special reference to chemotherapy resistance. Front Genet 2023; 13:993687. [PMID: 36685962 PMCID: PMC9852779 DOI: 10.3389/fgene.2022.993687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of epigenetic mechanisms have been depicted in several pathological consequence such as cancer. Different modes of epigenetic regulation (DNA methylation (hypomethylation or hypermethylation of promotor), histone modifications, abnormal expression of microRNAs (miRNAs), long non-coding RNAs, and small nucleolar RNAs), are discovered. Particularly, lncRNAs are known to exert pivot roles in different types of cancer including breast cancer. LncRNAs with oncogenic and tumour suppressive potential are reported. Differentially expressed lncRNAs contribute a remarkable role in the development of primary and acquired resistance for radiotherapy, endocrine therapy, immunotherapy, and targeted therapy. A wide range of molecular subtype specific lncRNAs have been assessed in breast cancer research. A number of studies have also shown that lncRNAs may be clinically used as non-invasive diagnostic biomarkers for early detection of breast cancer. Such molecular biomarkers have also been found in cancer stem cells of breast tumours. The objectives of the present review are to summarize the important roles of oncogenic and tumour suppressive lncRNAs for the early diagnosis of breast cancer, metastatic potential, and chemotherapy resistance across the molecular subtypes.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Harpal S. Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, India,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| | - Deeksha Pal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khairan Rajab
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Asadullah Shaikh
- College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia,*Correspondence: Vivek Kumar Garg, ; Asadullah Shaikh,
| |
Collapse
|
11
|
Zhang C, Xu L, Li X, Chen Y, Shi T, Wang Q. LINC00460 Facilitates Cell Proliferation and Inhibits Ferroptosis in Breast Cancer Through the miR-320a/MAL2 Axis. Technol Cancer Res Treat 2023; 22:15330338231164359. [PMID: 36938678 PMCID: PMC10028644 DOI: 10.1177/15330338231164359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Background: Emerging evidence suggests that long noncoding RNAs (lncRNAs) play an important role in the progression of multiple human cancers including breast cancer. In this study, we aimed to research novel functions of long intergenic noncoding RNA 460 (LINC00460) on cell proliferation and ferroptosis in breast cancer. Method: UALCAN, TANRIC, and GSE16446 data were used to analyze the expression of LINC00460 in breast cancer tissues. Furthermore, real-time quantitative PCR, western blot, cell proliferation assay, iron assay, and malondialdehyde (MDA) assay were applied to detect the function and mechanism of particular molecules. Results: The LINC00460 expression was significantly increased in breast cancer tissues compared with normal tissues. Importantly, patients with high LINC00460 expression showed a longer overall survival rate. LINC00460 knockdown markedly suppressed the proliferation of breast cancer cells and promoted ferroptosis. Mechanistic analysis revealed that LINC00460 promoted myelin and lymphocyte protein 2 (MAL2) expression by sponging miR-320a. Moreover, both miR-320a knockdown and MAL2 overexpression could reverse the effects of LINC00460 silencing on cell proliferation and ferroptosis. Conclusions: In summary, our results reveal an alternative mechanism by which breast cancer cells can acquire resistance to ferroptosis via the LINC00460/miR-320a/MAL2 axis.
Collapse
Affiliation(s)
- Chuanqiang Zhang
- Department of General Surgery, 627662The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liang Xu
- Neonatal Department, 604074Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Xiaowei Li
- Department of General Surgery, 627662The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yueqiu Chen
- Institute for Cardiovascular Science, 74566The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of 12582Soochow University, Suzhou, China
| | - Qiang Wang
- Department of General Surgery, 627662The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Mei L, Chen Y, Chen P, Chen H, He S, Jin C, Wang Y, Hu Z, Li W, Jin L, Cong W, Wang X, Guan X. Fibroblast growth factor 7 alleviates myocardial infarction by improving oxidative stress via PI3Kα/AKT-mediated regulation of Nrf2 and HXK2. Redox Biol 2022; 56:102468. [PMID: 36113339 PMCID: PMC9482143 DOI: 10.1016/j.redox.2022.102468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myocardial infarction (MI) triggers oxidative stress, which worsen cardiac function, eventually leads to remodeling and heart failure. Unfortunately, effective therapeutic approaches are lacking. Fibroblast growth factor 7 (FGF7) is proved with respect to its proliferative effects and high expression level during embryonic heart development. However, the regulatory role of FGF7 in cardiovascular disease, especially MI, remains unclear. FGF7 expression was significantly decreased in a mouse model at 7 days after MI. Further experiments suggested that FGF7 alleviated MI-induced cell apoptosis and improved cardiac function. Mechanistic studies revealed that FGF7 attenuated MI by inhibiting oxidative stress. Overexpression of FGF7 actives nuclear factor erythroid 2-related factor 2 (Nrf2) and scavenging of reactive oxygen species (ROS), and thereby improved oxidative stress, mainly controlled by the phosphatidylinositol-3-kinase α (PI3Kα)/AKT signaling pathway. The effects of FGF7 were partly abrogated in Nrf2 deficiency mice. In addition, overexpression of FGF7 promoted hexokinase2 (HXK2) and mitochondrial membrane translocation and suppressed mitochondrial superoxide production to decrease oxidative stress. The role of HXK2 in FGF7-mediated improvement of mitochondrial superoxide production and protection against MI was verified using a HXK2 inhibitor (3-BrPA) and a HXKII VDAC binding domain (HXK2VBD) peptide, which competitively inhibits localization of HXK2 on mitochondria. Furthermore, inhibition of PI3Kα/AKT signaling abolished regulation of Nrf2 and HXK2 by FGF7 upon MI. Together, these results indicate that the cardio protection of FGF7 under MI injury is mostly attributable to its role in maintaining redox homeostasis via Nrf2 and HXK2, which is mediated by PI3Kα/AKT signaling. The expression of FGF7 in cardiomyocytes is decreased upon myocardial infarction (MI). Overexpression of FGF7 in the heart protects against cardiomyocytes apoptosis in a rodent model of MI. FGF7 attenuates MI-induced cardiac apoptosis via maintaining redox homeostasis. FGF7 maintains redox homeostasis by promoting mitochondrial HXK2 localization and Nrf2 nuclear translocation.
Collapse
Affiliation(s)
- Lin Mei
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China; Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yunjie Chen
- Department of Pharmacy, Ningbo First Hospital, Ningbo, 315010, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Wanqian Li
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou, 318000, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
13
|
LincRNAs and snoRNAs in Breast Cancer Cell Metastasis: The Unknown Players. Cancers (Basel) 2022; 14:cancers14184528. [PMID: 36139687 PMCID: PMC9496948 DOI: 10.3390/cancers14184528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in research have led to earlier diagnosis and targeted therapies against breast cancer, which has resulted in reduced breast cancer-related mortality. However, the majority of breast cancer-related deaths are due to metastasis of cancer cells to other organs, a process that has not been fully elucidated. Among the factors and genes implicated in the metastatic process regulation, non-coding RNAs have emerged as crucial players. This review focuses on the role of long intergenic noncoding RNAs (lincRNAs) and small nucleolar RNAs (snoRNAs) in breast cancer cell metastasis. LincRNAs are transcribed between two protein-coding genes and are longer than 200 nucleotides, they do not code for a specific protein but function as regulatory molecules in processes such as cell proliferation, apoptosis, epithelial-to-mesenchymal transition, migration, and invasion while most of them are highly elevated in breast cancer tissues and seem to function as competing endogenous RNAs (ceRNAs) inhibiting relevant miRNAs that specifically target vital metastasis-related genes. Similarly, snoRNAs are 60-300 nucleotides long and are found in the nucleolus being responsible for the post-transcriptional modification of ribosomal and spliceosomal RNAs. Most snoRNAs are hosted inside intron sequences of protein-coding and non-protein-coding genes, and they also regulate metastasis-related genes affecting related cellular properties.
Collapse
|
14
|
Chen Q, Du X. FGF/FGFR-related lncRNAs based classification predicts prognosis and guides therapy in gastric cancer. Front Genet 2022; 13:948102. [PMID: 36105076 PMCID: PMC9465033 DOI: 10.3389/fgene.2022.948102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor (FGF) and its receptor (FGFR) play crucial roles in gastric cancer (GC). Long non-coding RNAs (lncRNAs) are defined as RNA molecules of around 200 nucleotides or more, which are not translated into proteins. As well-known regulatory factors, lncRNAs are considered as biomarkers for prognosis and treatment response in GC. It is of importance to identify FGF/FGFR-related lncRNAs in GC. Here, some FGF/FGFR-related lncRNAs were identified in GC based on the data from public databases, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Then a four-lncRNAs (FGF10-AS1, MIR2052HG, POU6F2-AS2, and DIRC1) risk score (RS) model was established for predicting GC’s prognosis by using Cox analysis. According to the median value of RS, GC patients were divided into low and high RS group. Low RS group displayed high tumor mutation burden and infiltration of immune cells, as well as more sensitivity to immunotherapy or chemotherapy. High RS group showed high infiltration of stromal cells and more oncogenic signatures. In addition, a comprehensive analysis was carried out and found that high RS group may exhibit specific sensitivity to Panobinostat (histone deacetylases inhibitor) and Tivantinib (MET inhibitor). In summary, our study not only offers a novel personalized prognostication classification model according to FGF/FGFR-related lncRNAs, but also provides a new strategy for subclass-specific precision treatment in GC.
Collapse
Affiliation(s)
- Qiuxiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojing Du
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiaojing Du,
| |
Collapse
|
15
|
Xiao L, Huang Y, Li Q, Wang S, Ma L, Fan Z, Tang Z, Yuan X, Liu B. Identification of a prognostic classifier based on EMT-related lncRNAs and the function of LINC01138 in tumor progression for lung adenocarcinoma. Front Mol Biosci 2022; 9:976878. [PMID: 36060239 PMCID: PMC9428519 DOI: 10.3389/fmolb.2022.976878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: This study aimed to develop a prognostic indicator based on epithelial-mesenchymal transition (EMT)-related long noncoding RNAs (lncRNAs) and explore the function of EMT-related lncRNAs in malignant progression in lung adenocarcinoma (LUAD). Materials and methods: A LUAD dataset was acquired from The Cancer Genome Atlas (TCGA) to identify prognostic EMT-related lncRNAs via differential expression analysis and univariate Cox regression analysis. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was utilized for variable selection and model construction. The EMT-related prognostic index (ERPI) was calculated according to the model and served as a classifier to divide LUAD individuals into high-ERPI and low-ERPI groups. A nomogram incorporating ERPI and clinicopathological variables was constructed. TCGA-LUAD, GSE50081, and GSE31210 were used to test the predictive capacity of the ERPI and nomogram. The characteristics of the tumor microenvironment (TME) were evaluated via the ESTIMATE, TIMER, and ssGSEA algorithms. Gene set variation analysis (GSVA) and ssGSEA were used to annotate the functions of the high-ERPI and low-ERPI groups. CCK8, transwell assay, wound-healing assay, and clone formation assay were conducted to clarify the biological functions of prognostic EMT-related lncRNAs. Results: Ninety-seven differentially expressed EMT-related lncRNAs were identified, 15 of which were related to overall survival (OS). A prognostic signature was constructed based on 14 prognostic EMT-related lncRNAs to calculate the ERPI of each patient, and the predictive ability of ERPI was verified in TCGA, GSE50081, and GSE31210. The low-ERPI group survived longer and had a lower percentage of patients in advanced stage than the high-ERPI group. The nomogram had the highest predictive accuracy, followed by ERPI and stage. Patients with low ERPI had higher infiltration degree of immune cells and stronger immune responses than those with high ERPI. A series of in vitro experiments demonstrated that knockdown of LINC01138 dampened variability, proliferation, and motility of A549 and H460 cells. Conclusion: Our study developed a prognostic classifier with robust prognostic performance and clarified the biological functions of LINC01138 in LUAD, aiding in making individual treatments for patients with LUAD and dissecting the mechanism of oncogenesis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijie Fan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Tang, ; Xianglin Yuan, ; Bo Liu,
| |
Collapse
|
16
|
Su M, Tang J, Yang D, Wu Z, Liao Q, Wang H, Xiao Y, Wang W. Oncogenic roles of the lncRNA LINC00460 in human cancers. Cancer Cell Int 2022; 22:240. [PMID: 35906593 PMCID: PMC9336008 DOI: 10.1186/s12935-022-02655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent an important group of endogenous RNAs with limit protein-encoding capability, with a length of more than 200 nucleotides. Emerging evidence have demonstrated that lncRNAs are greatly involved in multiple cancers by playing critical roles in tumor initiation and progression. Long intergenic non-protein coding RNA 460 (LINC00460), a novel cancer-related lncRNA, exhibits abnormal expression and oncogenic function in multiple cancers, and positively correlates with poor clinical characteristics of cancer patients. LINC00460 has also been shown to be a promising biomarker for diagnosis as well as prognostic evaluation in cancer patients. In this review, we briefly summarized recent knowledge on the expression, functional roles, molecular mechanisms, and diagnostic and prognostic values of LINC00460 in human malignancies.
Collapse
Affiliation(s)
- Min Su
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Jinming Tang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Desong Yang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhining Wu
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Hunan, 410013, Changsha, People's Republic of China
| | - Yuhang Xiao
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410001, People's Republic of China.
| | - Wenxiang Wang
- Thoracic Surgery Department 2, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
17
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
18
|
Breast cancer in the era of integrating “Omics” approaches. Oncogenesis 2022; 11:17. [PMID: 35422484 PMCID: PMC9010455 DOI: 10.1038/s41389-022-00393-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Worldwide, breast cancer is the leading cause of cancer-related deaths in women. Breast cancer is a heterogeneous disease characterized by different clinical outcomes in terms of pathological features, response to therapies, and long-term patient survival. Thus, the heterogeneity found in this cancer led to the concept that breast cancer is not a single disease, being very heterogeneous both at the molecular and clinical level, and rather represents a group of distinct neoplastic diseases of the breast and its cells. Indubitably, in the past decades we witnessed a significant development of innovative therapeutic approaches, including targeted and immunotherapies, leading to impressive results in terms of increased survival for breast cancer patients. However, these multimodal treatments fail to prevent recurrence and metastasis. Therefore, it is urgent to improve our understanding of breast tumor and metastasis biology. Over the past few years, high-throughput “omics” technologies through the identification of novel biomarkers and molecular profiling have shown their great potential in generating new insights in the study of breast cancer, also improving diagnosis, prognosis and prediction of response to treatment. In this review, we discuss how the implementation of “omics” strategies and their integration may lead to a better comprehension of the mechanisms underlying breast cancer. In particular, with the aim to investigate the correlation between different “omics” datasets and to define the new important key pathway and upstream regulators in breast cancer, we applied a new integrative meta-analysis method to combine the results obtained from genomics, proteomics and metabolomics approaches in different revised studies.
Collapse
|
19
|
Xu S, Xie J, Zhou Y, Liu H, Wang Y, Li Z. Integrated Analysis of RNA Binding Protein-Related lncRNA Prognostic Signature for Breast Cancer Patients. Genes (Basel) 2022; 13:genes13020345. [PMID: 35205391 PMCID: PMC8872055 DOI: 10.3390/genes13020345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been well known for their multiple functions in the tumorigenesis, development, and prognosis of breast cancer (BC). Mechanistically, their production, function, or stability can be regulated by RNA binding proteins (RBPs), which were also involved in the carcinogenesis and progression of BC. However, the roles and clinical implications of RBP-related lncRNAs in BC remain largely unknown. Therefore, we herein aim to construct a prognostic signature with RBP-relevant lncRNAs for the prognostic evaluation of BC patients. Firstly, based on the RNA sequencing data of female BC patients from The Cancer Genome Atlas (TCGA) database, we screened out 377 differentially expressed lncRNAs related to RBPs. The univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were then performed to establish a prognostic signature composed of 12-RBP-related lncRNAs. Furthermore, we divided the BC patients into high- and low-risk groups by the prognostic signature and found the overall survival (OS) of patients in the high-risk group was significantly shorter than that of the low-risk group. Moreover, the 12-lncRNA signature exhibited independence in evaluating the prognosis of BC patients. Additionally, a functional enrichment analysis revealed that the prognostic signature was associated with some cancer-relevant pathways, including cell cycle and immunity. In summary, our 12-lncRNA signature may provide a theoretical reference for the prognostic evaluation or clinical treatment of BC patients.
Collapse
Affiliation(s)
- Shaohua Xu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Jiahui Xie
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Yanjie Zhou
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Hui Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
| | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha 410082, China
- Correspondence: (Y.W.); (Z.L.)
| | - Zhaoyong Li
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha 410082, China; (S.X.); (J.X.); (Y.Z.); (H.L.)
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China
- Correspondence: (Y.W.); (Z.L.)
| |
Collapse
|
20
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
21
|
Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer 2022; 13:3-14. [PMID: 34821482 PMCID: PMC8720622 DOI: 10.1111/1759-7714.14238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length and with limited protein-coding potential, play vital roles in the pathogenesis, tumorigenesis, and angiogenesis of cancers. Aberrant expression of lncRNAs has been detected in various carcinomas and may be correlated with oncogenesis by affecting related genes expression. Recently, an increasing number of studies have reported on long intergenic non-protein coding RNA 460 (LINC00460) in human tumor fields. LINC00460 is upregulated in diverse cancer tissues and cells. The upregulated expression level of LINC00460 is correlated with larger tumor size, tumor node metastasis (TNM) stage, lymph node metastasis, and shorter overall survival. The regulatory mechanism of LINC00460 was complex and diverse. LINC00460 could act as a competitive endogenous RNA (ceRNA), directly bind with proteins or regulate multiple pathways, which affected tumor progression. Moreover, LINC00460 was also identified to increase drug resistance, and therefore, weaken the effectiveness of tumor treatment. It has become increasingly important to investigate the roles of LINC00460 in various cancers by different mechanisms. Therefore, a more comprehensive understanding of LINC00460 is crucial to expound on the cellular function and molecular mechanism of human cancers. In this review, we refer to studies concerning LINC00460 and provide the basis for the evaluation of LINC00460 as a predicted biomarker or potential therapeutic target in malignancies, and also provide ideas for the future research of lncRNAs similar to LINC00460.
Collapse
Affiliation(s)
- Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
| | - Jiwu Song
- Department of StomatologyWeifang People's Hospital, First Affiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Xiaoxiao Wang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yunxia Liu
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| |
Collapse
|
22
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
23
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Jamali E. A Concise Review on the Role of CircPVT1 in Tumorigenesis, Drug Sensitivity, and Cancer Prognosis. Front Oncol 2021; 11:762960. [PMID: 34804965 PMCID: PMC8599443 DOI: 10.3389/fonc.2021.762960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
CircPVT1 (hsa_circ_0001821) is a cancer-related circular RNA (circRNA) that originated from a genomic locus on chromosome 8q24. This locus has been previously found to encode the oncogenic long non-coding RNA PVT1. Expression of this circRNA has been found to be upregulated in diverse neoplastic conditions. CircPVT1 acts as a sponge for miR-125a, miR-125b, miR-124-3p, miR-30a-5p, miR-205-5p, miR-423-5p, miR-526b, miR-137, miR-145-5p, miR-497, miR-30d/e, miR-455-5p, miR-29a-3p, miR-204-5p, miR-149, miR-106a-5p, miR-377, miR-3666, miR-203, and miR-199a-5p. Moreover, it can regulate the activities of PI3K/AKT, Wnt5a/Ror2, E2F2, and HIF-1α. Upregulation of circPVT1 has been correlated with decreased survival of patients with different cancer types. In the current review, we explain the oncogenic impact of circPVT1 in different tissues based on evidence from in vitro, in vivo, and clinical investigations.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Zhang S, Zhang F, Niu Y, Yu S. Aberration of lncRNA LINC00460 is a Promising Prognosis Factor and Associated with Progression of Clear Cell Renal Cell Carcinoma. Cancer Manag Res 2021; 13:6489-6497. [PMID: 34429655 PMCID: PMC8379393 DOI: 10.2147/cmar.s322747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Long noncoding RNAs have been studied more and more as potential prognostic markers. However, the prognostic of LINC00460 in clear cell renal cell carcinoma (ccRCC) has not been explored. In this study, the potential role of LINC00460 was investigated in ccRCC. Patients and Methods One hundred thirteen pairs of ccRCC tissues and para-normal tissues were collected. The expressions of LINC00460 in these tissues and ccRCC cells were evaluated via qRT-PCR. The prognostic value of LINC00460 was accessed with the use of Kaplan–Meier analysis and Cox proportional hazards model analysis. The influence of LINC00460 on ccRCC cell proliferation, migration, and invasion was determined via cell counting kit-8 (CCK-8) and Transwell assays. Results The results revealed that LINC00460 was significantly enhanced in ccRCC tissues, as well as in ccRCC cell lines. The overexpression of LINC00460 was significantly associated with lymph node metastasis and TNM stage, and lead to poor overall survival. Knockdown of LINC00460 reduces the cell ability of proliferation, migration, and invasion. LINC00460 could sponge to miR-149-5p. Conclusion LINC00460 may be developed as a prognostic biomarker and molecular therapy target for ccRCC.
Collapse
Affiliation(s)
- Shijie Zhang
- General Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Fengyun Zhang
- Hematology and Rheumatology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Yingdong Niu
- Supply Room, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| | - Shenglong Yu
- Urology Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, People's Republic of China
| |
Collapse
|
25
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Hajiesmaeili M. Long intergenic non-protein coding RNA 460: Review of its role in carcinogenesis. Pathol Res Pract 2021; 225:153556. [PMID: 34391180 DOI: 10.1016/j.prp.2021.153556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) establish a group of long non-coding RNAs (lncRNAs) that have no overlap with protein-coding genes. These transcripts have been found to affect chromatin configurations, arrange high-order nuclear structures, function as scaffolds for proteins and RNAs and serve as molecular decoys. LINC00460 is a member of this group of lincRNAs that participate in the pathoetiology of cancers. This lincRNA has been found to serve as a sponge for a number of tumor suppressor miRNAs, including miR-539, miR-1224-5p, miR-612, miR-342-3p, miR-485-5p and miR-149-5p, and increase expression of oncogenic targets of these miRNAs. Moreover, through targeting miRNAs that regulate sensitivity to chemotherapeutic agents, it can affect response of cancer cells to these agents. In the current manuscript, we tended to describe the role of LINC00460 in this process through summarizing the results of in vitro, in vivo and human studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Lin X, Zhou B, Ma J. Significance of LINC00460 in the progression and prognosis in digestive tract tumors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:628-636. [PMID: 34275932 PMCID: PMC10930199 DOI: 10.11817/j.issn.1672-7347.2021.200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 11/03/2022]
Abstract
The long intergic non-protein coding RNA 460 (LINC00460) is abnormally highly expressed in gastrointestinal tumors and plays an important role in promoting tumor formation and development. LINC00460 is mainly distributed in cytoplasm and has many abnormal gene variants of single nucleotide polymorphism in tumors. LINC00460 can promote the proliferation, metastasis, angiogenesis, radiotherapy and chemotherapy resistance, inhibit the apoptosis of tumor cells, and further promote the malignant progression of tumors via involving in chromatin state maintenance, methylation modification, endogenous competition and transcriptional regulation. It may serve as a valuable tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| | - Bo Zhou
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Jun Ma
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| |
Collapse
|
27
|
Sun X, Luo Z, Gong L, Tan X, Chen J, Liang X, Cai M. Identification of significant genes and therapeutic agents for breast cancer by integrated genomics. Bioengineered 2021; 12:2140-2154. [PMID: 34151730 PMCID: PMC8806825 DOI: 10.1080/21655979.2021.1931642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women; thus, more cancer prevention research is urgently needed. The aim of this study was to predict potential therapeutic agents for breast cancer and determine their molecular mechanisms using integrated bioinformatics. Summary data from a large genome-wide association study of breast cancer was derived from the UK Biobank. The gene expression profile of breast cancer was from the Oncomine database. We performed a network-wide association study and gene set enrichment analysis to identify the significant genes in breast cancer. Then, we performed Gene Ontology analysis using the STRING database and conducted Kyoto Encyclopedia of Genes and Genomes pathway analysis using Cytoscape software. We verified our results using the Gene Expression Profile Interactive Analysis, PROgeneV2, and Human Protein Atlas databases. Connectivity map analysis was used to identify small-molecule compounds that are potential therapeutic agents for breast cancer. We identified 10 significant genes in breast cancer based on the gene expression profile and genome-wide association study. A total of 65 small-molecule compounds were found to be potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Xinyue Tan
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Jie Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Xin Liang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi P.R. China
| |
Collapse
|
28
|
Yang H, Xiong X, Li H. Development and Interpretation of a Genomic Instability Derived lncRNAs Based Risk Signature as a Predictor of Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2021; 11:678253. [PMID: 34094983 PMCID: PMC8176022 DOI: 10.3389/fonc.2021.678253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a kind of frequently diagnosed cancer, leading to high death rate in patients. Genomic instability (GI) is regarded as playing indispensable roles in tumorigenesis and impacting the prognosis of patients. The aberrant regulation of long non-coding RNAs (lncRNAs) is a main cause of GI. We combined the somatic mutation profiles and expression profiles to identify GI derived lncRNAs (GID-lncRNAs) in ccRCC and developed a GID-lncRNAs based risk signature for prognosis prediction and medication guidance. METHODS We decided cases with top 25% cumulative number of somatic mutations as genomically unstable (GU) group and last 25% as genomically stable (GS) group, and identified differentially expressed lncRNAs (GID-lncRNAs) between two groups. Then we developed the risk signature with all overall survival related GID-lncRNAs with least absolute shrinkage and selection operator (LASSO) Cox regression. The functions of the GID-lncRNAs were partly interpreted by enrichment analysis. We finally validated the effectiveness of the risk signature in prognosis prediction and medication guidance. RESULTS We developed a seven-lncRNAs (LINC00460, AL139351.1, AC156455.1, AL035446.1, LINC02471, AC022509.2, and LINC01606) risk signature and divided all samples into high-risk and low-risk groups. Patients in high-risk group were in more severe clinicopathologic status (higher tumor grade, pathological stage, T stage, and more metastasis) and were deemed to have less survival time and lower survival rate. The efficacy of prognosis prediction was validated by receiver operating characteristic analysis. Enrichment analysis revealed that the lncRNAs in the risk signature mainly participate in regulation of cell cycle, DNA replication, material metabolism, and other vital biological processes in the tumorigenesis of ccRCC. Moreover, the risk signature could help assess the possibility of response to precise treatments. CONCLUSION Our study combined the somatic mutation profiles and the expression profiles of ccRCC for the first time and developed a GID-lncRNAs based risk signature for prognosis predicting and therapeutic scheme deciding. We validated the efficacy of the risk signature and partly interpreted the roles of the seven lncRNAs composing the risk signature in ccRCC. Our study provides novel insights into the roles of genomic instability derived lncRNAs in ccRCC.
Collapse
Affiliation(s)
| | | | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Zhang Y, Sun Y, Ding L, Shi W, Ding K, Zhu Y. Long Non-Coding RNA LINC00467 Correlates to Poor Prognosis and Aggressiveness of Breast Cancer. Front Oncol 2021; 11:643394. [PMID: 33996559 PMCID: PMC8113855 DOI: 10.3389/fonc.2021.643394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer remains the leading cause of female cancer-related mortalities worldwide. Long non-coding RNAs (LncRNAs) have been increasingly reported to play pivotal roles in tumorigenesis and cancer progression. Herein, we focused on LINC00467, which has never been studied in breast cancer. Silence of LINC00467 suppressed proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of breast cancer cells in vitro, whereas forced expression of LINC00467 exhibited the opposite effects. Furthermore, we demonstrated overexpression of LINC00467 promoted tumor growth, while knockdown of LINC00467 inhibited pulmonary metastasis in vivo. Mechanistically, LINC00467 down-regulated miR-138-5p by acting as a miRNA “sponge”. Besides, LINC00467 also up-regulated the protein level of lin-28 homolog B (LIN28B) via a direct interaction. A higher expression level of LINC00467 was observed in breast cancer tissues as compared to the adjacent normal counterparts and elevated LINC00467 predicted poor overall survival. Our findings suggest LINC00467 promotes progression of breast cancer through interacting with miR-138-5p and LIN28B directly. LINC00467 may serve as a potential candidate for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Yi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lin Ding
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Oncology of the First Affiliated Hospital, Division of Life Science and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
30
|
Zhuang Q, Jin Z, Zheng X, Jin T, Xiang L. Long non‑coding RNA LINC00460 serves as a potential biomarker and oncogene via regulation of the miR‑320b/PBX3 axis in acute myeloid leukemia. Mol Med Rep 2021; 23:435. [PMID: 33846790 PMCID: PMC8060808 DOI: 10.3892/mmr.2021.12074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNA 00460 (LINC00460) has been reported to be involved in the tumorigenesis of various cancer types. However, the function of LINC00460 in acute myeloid leukemia (AML) remains elusive. Therefore, the present study aimed to investigate the role of LINC00460 in AML. The expression of LINC00460 in the serum of 80 diagnosed patients with AML and 67 healthy controls was measured via reverse transcription-quantitative polymerase chain reaction, and the results were compared with clinical features and patient outcomes. The expression of LINC00460 in 45 patients with cytogenetically normal-AML (CN-AML) was also assayed. Receiver operating characteristic (ROC) curves were generated to evaluate the sensitivity and specificity of serum LINC00460. In addition, the effects of LINC00460 on the viability, cell cycle distribution and apoptosis of AML cells were investigated. Bioinformatics tools were used to identify the possible mechanisms of how LINC00460 affects AML cells. It was found that the expression of LINC00460 was significantly upregulated in the serum of patients with AML and those with CN-AML. Higher expression of serum LINC00460 was positively associated with French-American-British classification and cytogenetics. Furthermore, ROC curve analyses demonstrated that serum LINC00460 could differentiate patients with AML from healthy individuals with an area under the curve of 0.8488 (95% CI, 0.7697–0.9279). The serum LINC00460 expression was also significantly decreased when the patients achieved complete remission. Kaplan-Meier analysis indicated that patients with high serum LINC00460 expression had a shorter overall survival time compared with the low serum LINC00460 expression group. Knockdown of LINC00460 inhibited viability, while inducing cell cycle arrest and apoptosis in AML cells. LINC00460 was also a decoy of microRNA (miR)-320b, which can further inhibit the expression of PBX homeobox 3 (PBX3). Collectively, the results suggested that LINC00460 may be applied as a potential diagnostic and prognostic biomarker for patients with AML. It was identified that LINC00460 may exert its effects, at least partly, via the miR-320b/PBX3 axis in AML.
Collapse
Affiliation(s)
- Qiang Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhenlin Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiangkuo Zheng
- Department of Experimental Center, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ting Jin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lina Xiang
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
31
|
Cisneros-Villanueva M, Hidalgo-Pérez L, Cedro-Tanda A, Peña-Luna M, Mancera-Rodríguez MA, Hurtado-Cordova E, Rivera-Salgado I, Martínez-Aguirre A, Jiménez-Morales S, Alfaro-Ruiz LA, Arellano-Llamas R, Tenorio-Torres A, Domínguez-Reyes C, Villegas-Carlos F, Ríos-Romero M, Hidalgo-Miranda A. LINC00460 Is a Dual Biomarker That Acts as a Predictor for Increased Prognosis in Basal-Like Breast Cancer and Potentially Regulates Immunogenic and Differentiation-Related Genes. Front Oncol 2021; 11:628027. [PMID: 33912452 PMCID: PMC8074675 DOI: 10.3389/fonc.2021.628027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BRCA) is a serious public health problem, as it is the most frequent malignant tumor in women worldwide. BRCA is a molecularly heterogeneous disease, particularly at gene expression (mRNAs) level. Recent evidence shows that coding RNAs represent only 34% of the total transcriptome in a human cell. The rest of the 66% of RNAs are non−coding, so we might be missing relevant biological, clinical or regulatory information. In this report, we identified two novel tumor types from TCGA with LINC00460 deregulation. We used survival analysis to demonstrate that LINC00460 expression is a marker for poor overall (OS), relapse-free (RFS) and distant metastasis-free survival (DMFS) in basal-like BRCA patients. LINC00460 expression is a potential marker for aggressive phenotypes in distinct tumors, including HPV-negative HNSC, stage IV KIRC, locally advanced lung cancer and basal-like BRCA. We show that the LINC00460 prognostic expression effect is tissue-specific, since its upregulation can predict poor OS in some tumors, but also predicts an improved clinical course in BRCA patients. We found that the LINC00460 expression is significantly enriched in the Basal-like 2 (BL2) TNBC subtype and potentially regulates the WNT differentiation pathway. LINC00460 can also modulate a plethora of immunogenic related genes in BRCA, such as SFRP5, FOSL1, IFNK, CSF2, DUSP7 and IL1A and interacts with miR-103-a-1, in-silico, which, in turn, can no longer target WNT7A. Finally, LINC00460:WNT7A ratio constitutes a composite marker for decreased OS and DMFS in Basal-like BRCA, and can predict anthracycline therapy response in ER-BRCA patients. This evidence confirms that LINC00460 is a master regulator in BRCA molecular circuits and influences clinical outcome.
Collapse
Affiliation(s)
- Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Lizbett Hidalgo-Pérez
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Mónica Peña-Luna
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | - Eduardo Hurtado-Cordova
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Irene Rivera-Salgado
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Alejandro Martínez-Aguirre
- Departamento de Anatomía Patológica, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, Ciudad de México, México
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Luis Alberto Alfaro-Ruiz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | - Rocío Arellano-Llamas
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| | | | | | | | - Magdalena Ríos-Romero
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México.,Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, México
| |
Collapse
|
32
|
Comprehensive analysis of tumor mutation burden and immune microenvironment in gastric cancer. Biosci Rep 2021; 41:227672. [PMID: 33492335 PMCID: PMC7921293 DOI: 10.1042/bsr20203336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor mutation burden (TMB) was a promising marker for immunotherapy. We aimed to investigate the prognostic role of TMB and its relationship with immune cells infiltration in gastric cancer (GC). We analyzed the mutation landscape of all GC cases and TMB of each GC patient was calculated and patients were divided into TMB-high and TMB-low group. Differentially expressed genes (DEGs) between the two groups were identified and pathway analysis was performed. The immune cells infiltration in each GC patient was evaluated and Kaplan-Meier analysis was performed to investigate the prognostic role of immune cells infiltration. At last, hub immune genes were identified and a TMB prognostic risk score (TMBPRS) was constructed to predict the survival outcome of GC patients. The relationships between mutants of hub immune genes and immune infiltration level in GC was investigated. We found higher TMB was correlated with better survival outcome and female patients, patients with T1-2 and N0 had higher TMB score. Altogether 816 DEGs were harvested and pathway analysis demonstrated that patients in TMB-high group were associated with neuroactive ligand-receptor interaction, cAMP signaling pathway, calcium signaling pathway. The infiltration of activated CD4+ memory T cells, follicular helper T cells, resting NK cells, M0 and M1 macrophages and neutrophils in TMB-high group were higher compared than that in TMB-low group and high macrophage infiltration was correlated with inferior survival outcome of GC patients. Lastly, the TMBPRS was constructed and GC patients with high TMBPRS had poor prognosis.
Collapse
|
33
|
Zhou L, Zhang S, Zhang L, Li F, Sun H, Feng J. MiR-199a-3p inhibits the proliferation, migration, and invasion of endothelial cells and retinal pericytes of diabetic retinopathy rats through regulating FGF7 via EGFR/PI3K/AKT pathway. J Recept Signal Transduct Res 2020; 41:19-31. [PMID: 32586178 DOI: 10.1080/10799893.2020.1783556] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE MiR-199a-3p is low expressed in diabetic retinopathy (DR). In the current study, we investigated the effects of miR-199a-3p on DR and the potential mechanisms. METHODS A DR rat model was established, and endothelial cells (ECs) and retinal pericytes (RPs) were extracted from the DR model rats to detect miR-199a-3p expression. Bioinformatics analysis predicted that fibroblast growth factor 7 (FGF7) was a target gene for miR-199a-3p, which was confirmed by dual-luciferase assay. Cell proliferation, migration, and invasion were detected by cell counting kit-8 (CCK-8), colony formation assay, wound-healing, and Transwell assay. Quantitative real-time polymerase chain reaction (q-PCR) and Western blot were performed to detect the expressions of mRNAs and proteins. RESULTS MiR-199a-3p was low expressed and FGF7 was high-expressed in ECs and RPs. Overexpressed miR-199a-3p suppressed the proliferation, migration, and invasion, and FGF7 expression of ECs and RPs. However, overexpression of FGF7 effectively eliminated the suppressive effects of miR-199a-3p overexpression malignant behaviors of the cells. Meanwhile, up-regulation of FGF7 noticeably reversed the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the expression of epidermal growth factor receptor (EGFR) reduced by miR-199a-3p. CONCLUSION Our findings revealed that in the DR rat model, miR-199a-3p inhibited cell proliferation, migration, and invasion of EC and RP through targeting FGF7 and inhibiting the activation of the EGFR/PI3K/AKT pathway. This study may provide a new direction for the search for the treatment of DR.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Suozhi Zhang
- Department of Ophthalmology, Huai'an Maternity and Child Health Hospital, Huai'an, China
| | - Lijuan Zhang
- Operating Room, Huai'an First People's Hospital, Huai'an, China
| | - Fangfang Li
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Hao Sun
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Jun Feng
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
34
|
Comprehensive analysis of competitive endogenous RNAs network reveals potential prognostic lncRNAs in gastric cancer. Heliyon 2020; 6:e03978. [PMID: 32455175 PMCID: PMC7235626 DOI: 10.1016/j.heliyon.2020.e03978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of a range of human diseases, including various cancers, with multiple previous studies having explored lncRNA dysregulation in the context of gastric cancer (GC). The present study sought to expand upon these previous results by downloading lncRNA, mRNA, and microRNA (miRNA) expression profiles derived from 180 GC tissues and 24 normal control tissues within the Cancer Genome Atlas (TCGA) database. These datasets were then interrogated to identify GC-related differentially expressed (DE) RNAs (|fold change| ≥ 2, FDR< 0.01), leading to the identification of 1946 DE lncRNAs, 123 DE miRNAs, and 3159 DE mRNAs. These results were then used to generate a putative GC-related competitive endogenous RNA (ceRNA) network composed of 131 lncRNAs, 9 miRNAs, and 78 mRNAs. Subsequent survival analyses based upon this network revealed 17 of these lncRNAs to be significantly associated with GC patient survival (P < 0.05). Further multivariable Cox regression and lasso analyses allowed for the construction of an 8-lncRNA risk score that was able to effectively predict GC patient survival with good discriminative ability. The Kaplan-Meier Plotter database further confirmed that network hub genes that were related to these 8 lncRNAs were associated with GC patient prognosis (P < 0.05). As the ceRNA network in the present study was constructed with a focus on both disease stage and differential gene expression, it represents a key resource that will offer valuable insights into the mechanistic roles of ceRNA pathways in GC development and progression.
Collapse
|
35
|
Cui Y, Zhang C, Lian H, Xie L, Xue J, Yin N, Guan F. LncRNA linc00460 sponges miR-1224-5p to promote esophageal cancer metastatic potential and epithelial-mesenchymal transition. Pathol Res Pract 2020; 216:153026. [PMID: 32534700 DOI: 10.1016/j.prp.2020.153026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Increasing studies highlight the crucial role of long non-coding RNAs (lncRNAs) in carcinogenesis of various human cancer types, including esophageal cancer (ESCA). Long intergenic non-coding RNA 00460 (Linc00460), a novel oncogenic lncRNA, has been reported to accelerate ESCA cell growth. This study aimed to investigate the role and possible regulatory mechanism of linc00460 in ESCA metastasis. METHODS Bioinformatics analysis and quantitative real time polymerase chain reaction (qRT-PCR) were used to detect linc00460 expression in ESCA. Wound healing assay, Transwell assay and Western blot were utilized to examine migration, invasion and epithelial-mesenchymal transition (EMT) of ESCA cells. The direct binding effect between linc00460 and microRNA-1224-5p (miR-1224-5p) was evaluated by the dual luciferase reporter assay. RESULTS In this study, we discovered that lncRNA linc00460 was obviously over-expressed in ESCA, both in tissues and cell lines. Down-regulation of linc00460 significantly suppressed the metastatic potential (including cell migration and invasion) and EMT of ESCA cells. In addition, miR-1224-5p, a potential tumor suppressor, was negatively correlated with linc00460 in ESCA. Linc00460 and miR-1224-5p could bind directly in ESCA cells. Inhibition of miR-1224-5p partially abrogated the effects of linc00460 decrease on metastatic potential and EMT of ESCA cells. CONCLUSIONS Taken together, linc00460 may function as a molecular sponge to adsorb miR-1224-5p, thereby promoting ESCA metastasis and EMT. Our findings suggest that linc00460/miR-1224-5p is a possible clinical target for ESCA.
Collapse
Affiliation(s)
- Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Chunyan Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hongkai Lian
- Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Ningwei Yin
- Department of General Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Long non-coding RNA LINC00460 predicts poor survival and promotes cell viability in pancreatic cancer. Oncol Lett 2020; 20:1369-1375. [PMID: 32724379 PMCID: PMC7377077 DOI: 10.3892/ol.2020.11652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence has demonstrated that long non-coding RNAs (lncRNAs) possess great potential as vital biomarkers and powerful therapeutic targets in various diseases. In the present study, differentially expressed transcripts in pancreatic cancer (PC) were identified, and a competing endogenous RNA (ceRNA) network was constructed using The Cancer Genome Atlas database. An independent cohort consisting of 59 patients with PC was used to validate the clinical value of the identified lncRNA. Cell viability and colony formation assays were used to evaluate the biological functions of the lncRNA in PC cells. The present bioinformatic analysis revealed that LINC00460 was upregulated in PC samples with a prognostic significance. In the ceRNA network, it potentially targeted the microRNA-503/cyclin D1 axis. The results of real-time quantitative PCR confirmed that LINC00460 was significantly upregulated in cancer tissues and was associated with poor survival of patients with PC. The expression levels of LINC00460 were significantly associated with tumor size, but not with age, sex, differentiation, lymph node metastasis, vascular invasion and tumor stage. Through univariate and multivariate analysis, LINC00460 was characterized as an independent prognostic biomarker for PC. Further in vitro experiments demonstrated that suppressing LINC00460 using small interfering RNA inhibited viability and colony formation of PC cells. In summary, LINC00460 may be an independent prognostic biomarker for PC and may serve as an oncogenic lncRNA that promotes PC cell growth. Further in-depth exploration is required to reveal the specific biological mechanism of LINC00460 in PC cells.
Collapse
|
37
|
Lin YZ, Wu YP, Ke ZB, Cai H, Chen DN, Chen SH, Li XD, Lin TT, Huang JB, Zheng QS, Xue XY, Xu N, Wei Y. Bioinformatics Analysis of the Expression of Key Long Intergenic Non-Protein Coding RNA Genes in Bladder Cancer. Med Sci Monit 2020; 26:e920504. [PMID: 32277695 PMCID: PMC7169439 DOI: 10.12659/msm.920504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Evidence indicates that there is an important role for long non-coding RNAs (lncRNA) in numerous cellular processes and that lncRNAs dysregulation contributes to tumor progression. Improved insight into the molecular characteristics of bladder cancer is required to predict outcomes and to develop a new rationale for targeted therapeutic strategies. Bioinformatics methods, including functional enrichment and network analysis combined with survival analysis, are required to process a large volume of data to obtain further information about differentially expressed genes (DEGs) in bladder cancer. This study aimed to explore the role of lncRNAs and their regulation network in bladder cancer. Material/Methods We analyzed bladder cancer data by The Cancer Genome Atlas profiling to identify differentially expressed lncRNAs in bladder cancer. The genes involved in the circlncRNAnet database were evaluated using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), evolutionary relationship analysis, and protein-protein interaction (PPI) networks. Results Two new lncRNAs, ADAMTS9-AS1 and LINC00460, were shown to be differentially expressed in bladder cancer. Patients were divided into 2 groups (high expression and low expression) according to their median expression values. The overall survival and disease-free survival of patients with high ADAMTS9-AS1 bladder cancer were significantly shorter; the expression of LINC00460 had no significant correlation with survival. GO and KEGG analysis of the 2 lncRNA-related genes revealed that these lncRNAs played a vital role in tumorigenesis. Bioinformatics analysis showed that key genes related to LINC00460, including CXCL, CCL, and CSF2, may be related to the development of bladder cancer. The low expression of ADAMTS9-AS1 may influence the survival rate of bladder cancer with the hub gene as a target. Conclusions LncRNA, including LINC00460 and ADAMTS9-AS1, might play a crucial role in the biosynthesis network of bladder cancer. Differential expression results of ADAMTS9-AS1 suggests it may be correlated with a worse prognosis and a shorter survival time. We outlined the biosynthesis network that regulates lncRNAs in bladder cancer. Further experimental data is needed to validate our results.
Collapse
Affiliation(s)
- Yun-Zhi Lin
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Yu-Peng Wu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Zhi-Bin Ke
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Hai Cai
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Dong-Ning Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Shao-Hao Chen
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xiao-Dong Li
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ting-Ting Lin
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Jin-Bei Huang
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Qing-Shui Zheng
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Xue-Yi Xue
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Ning Xu
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Yong Wei
- Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
38
|
Zhang L, Liu L, Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomed Pharmacother 2020; 123:109751. [DOI: 10.1016/j.biopha.2019.109751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
|
39
|
Du Y, Wei N, Hong J, Pan W. Long non-coding RNASNHG17 promotes the progression of breast cancer by sponging miR-124-3p. Cancer Cell Int 2020; 20:40. [PMID: 32042267 PMCID: PMC7003346 DOI: 10.1186/s12935-020-1129-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background Small nucleolar RNA host gene 17 (SNHG17), a novel cancer-related long noncoding RNA (lncRNA), was reported to be responsible for processing and developing in several cancers. Nonetheless, the clinical significance and biological function of SNHG17 in human breast cancer (BC) remain rarely known. Materials and methods 58 pairs of BC tissues and adjacent non-cancerous tissues were harvested to measure SNHG17 expression levels. SNHG17 was knockdown to study its biological behavior in BC cells. The microRNAs (miRNAs) that can bind to SNHG17 were predicated using Starbase2.0 and were tested using luciferase reporter activity and RIP assays. A xenograft model was established to investigate the impact of SNHG17 in tumor growth in vivo. Results An increased SNHG17 was observed in BC samples and cell lines compared with corresponding control. Increased SNHG17 was closely associated with poor prognosis.SNHG17 depletion suppressed cell proliferation, migration and invasion in vitro, as well as inhibited tumor growth in xenograft tumor models. Mechanistically, SNHG17 could function as an endogenous sponge of miR-124-3p in BC cells. Moreover, the repression of cell proliferation, migration and invasion induced by SNHG17 knockdown would reversed by miR-124-3p inhibitor. Conclusion The present study demonstrated that the lncRNASNHG17 could regulate the progression of BC by sponging miR-124-3p.
Collapse
Affiliation(s)
- Ye Du
- 1Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021 Jilin People's Republic of China
| | - Na Wei
- 2Department of First Operating Room, The First Hospital of Jilin University, Changchun, 130021 Jilin People's Republic of China
| | - Jinghui Hong
- 1Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021 Jilin People's Republic of China
| | - Weiyun Pan
- 3Department of ICU, The First Hospital of Jilin University, Changchun, 130021 Jilin People's Republic of China
| |
Collapse
|
40
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|