1
|
Lewis F, Beirne J, Henderson B, Norris L, Cadoo K, Kelly T, Martin C, Hurley S, Kanjuga M, O'Driscoll L, Gately K, Oner E, Saini VM, Brooks D, Selemidis S, Kamran W, Haughey N, Maguire P, O'Gorman C, Saadeh FA, Ward MP, O'Leary JJ, O'Toole SA. Unravelling the biological and clinical challenges of circulating tumour cells in epithelial ovarian carcinoma. Cancer Lett 2024; 605:217279. [PMID: 39341451 DOI: 10.1016/j.canlet.2024.217279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Epithelial ovarian carcinoma (EOC) is the eighth most common cancer in women and the leading cause of gynaecological cancer death, predominantly due to the absence of effective screening tools, advanced stage at diagnosis, and high rates of recurrence. Circulating tumour cells (CTCs), a rare subset of tumour cells that disseminate from a tumour and migrate into the circulation, play a pivotal role in the metastatic cascade, and therefore hold promise as biomarkers for disease monitoring and prognostication. Exploring CTCs from liquid biopsies is an appealing approach for research and clinical practice, given it is minimally invasive, facilitates serial sampling and enables the capture of the entire spectrum of cancer cells circulating in the blood. The prognostic utility of CTC enumeration has been FDA-approved for clinical use in metastatic breast, prostate, and colorectal cancers. However, the unique biology of EOC, discussed herein, compounds the detection and characterisation complexities already inherent in CTC research, consequently hindering progress towards clinical applications. The aim of this review is to provide an overview of both the biological and clinical challenges encountered in harnessing the power of CTCs in EOC.
Collapse
Affiliation(s)
- Faye Lewis
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - James Beirne
- Blackrock Health Hermitage Clinic, Old Lucan Road, Dublin, Ireland
| | - Brian Henderson
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy Norris
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Karen Cadoo
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; The Haematology, Oncology and Palliative Care (HOPe) Directorate, St James's Hospital, Dublin, Ireland
| | - Tanya Kelly
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Hurley
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Marika Kanjuga
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorraine O'Driscoll
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Kathy Gately
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Ezgi Oner
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Volga M Saini
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland; Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
| | - Doug Brooks
- Cancer Research Institute, University of South Australia, 5001, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Victoria, 3083, Bundoora, Australia
| | - Waseem Kamran
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Niamh Haughey
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Patrick Maguire
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Catherine O'Gorman
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Feras Abu Saadeh
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland; Division of Gynaecological Oncology, St James's Hospital, Dublin, Ireland
| | - Mark P Ward
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| | - John J O'Leary
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| | - Sharon A O'Toole
- Department of Histopathology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Wilczyński J, Paradowska E, Wilczyński M. High-Grade Serous Ovarian Cancer-A Risk Factor Puzzle and Screening Fugitive. Biomedicines 2024; 12:229. [PMID: 38275400 PMCID: PMC10813374 DOI: 10.3390/biomedicines12010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal tumor of the female genital tract. Despite extensive studies and the identification of some precursor lesions like serous tubal intraepithelial cancer (STIC) or the deviated mutational status of the patients (BRCA germinal mutation), the pathophysiology of HGSOC and the existence of particular risk factors is still a puzzle. Moreover, a lack of screening programs results in delayed diagnosis, which is accompanied by a secondary chemo-resistance of the tumor and usually results in a high recurrence rate after the primary therapy. Therefore, there is an urgent need to identify the substantial risk factors for both predisposed and low-risk populations of women, as well as to create an economically and clinically justified screening program. This paper reviews the classic and novel risk factors for HGSOC and methods of diagnosis and prediction, including serum biomarkers, the liquid biopsy of circulating tumor cells or circulating tumor DNA, epigenetic markers, exosomes, and genomic and proteomic biomarkers. The novel future complex approach to ovarian cancer diagnosis should be devised based on these findings, and the general outcome of such an approach is proposed and discussed in the paper.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Gynecological Oncology, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
3
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
4
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
5
|
Zhang S, Yan C, Millar DG, Yang Q, Heather JM, Langenbucher A, Morton LT, Sepulveda S, Alpert E, Whelton LR, Zarrella DT, Guo M, Minogue E, Lawrence MS, Rueda BR, Spriggs DR, Lu W, Langenau DM, Cobbold M. Antibody-Peptide Epitope Conjugates for Personalized Cancer Therapy. Cancer Res 2022; 82:773-784. [PMID: 34965933 DOI: 10.1158/0008-5472.can-21-2200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs. SIGNIFICANCE This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Songfa Zhang
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases & Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Chuan Yan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - David G Millar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Qiqi Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - James M Heather
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | | | - Sean Sepulveda
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Eric Alpert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Lauren R Whelton
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - Mei Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Eleanor Minogue
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts
| | - David R Spriggs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Weiguo Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases & Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, Massachusetts
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
- AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
6
|
He S, Yu S, Wei J, Ding L, Yang X, Wu Y. New horizons in the identification of circulating tumor cells (CTCs): An emerging paradigm shift in cytosensors. Biosens Bioelectron 2022; 203:114043. [PMID: 35121449 DOI: 10.1016/j.bios.2022.114043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are shed from a primary tumor into the bloodstream and function as seeds for cancer metastasis at distant locations. Enrichment and identification methods of CTCs in the blood of patients plays an important role in diagnostic assessments and personalized treatments of cancer. However, the current traditional identification methods not only impact the viability of cells, but also cannot determine the type of cancer cells when the disease is unknown. Hence, new methods to identify CTCs are urgently needed. In this context, many advanced and safe technologies have emerged to distinguish between cancer cells and blood cells, and to distinguish specific types of cancer cells. In this review, at first we have briefly discussed recent advances in technologies related to the enrichment of CTCs, which lay a good foundation for the identification of CTCs. Next, we have summarized state-of-the-art technologies to confirm whether a given cell is indeed a tumor cell and determine the type of tumor cell. Finally, the challenges for application and potential directions of the current identification methods in clinical analysis of CTCs have been discussed.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinlan Wei
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Openshaw MR, McVeigh TP. Non-invasive Technology Advances in Cancer-A Review of the Advances in the Liquid Biopsy for Endometrial and Ovarian Cancers. Front Digit Health 2021; 2:573010. [PMID: 34713045 PMCID: PMC8521848 DOI: 10.3389/fdgth.2020.573010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Improving cancer survival rates globally requires improvements in disease detection and monitoring, with the aim of improving early diagnosis and prediction of disease relapse. Traditional means of detecting and monitoring cancers rely largely on imaging and, where possible, blood-based protein biomarkers, many of which are non-specific. Treatments are being improved by identification of inherited and acquired genomic aberrations in tumors, some of which can be targeted by newly developed therapeutic interventions. Treatment of gynecological malignancy is progressively moving toward personalized therapy, as exemplified by application of PARP-inhibition for patients with BRCA-deficient tubo-ovarian cancers, or checkpoint inhibition in patients with mismatch repair-deficient disease. However, the more recent discovery of a group of biomarkers described under the umbrella term of “liquid biopsy” promises significant improvement in our ability to detect and monitor cancers. The term “liquid biopsy” is used to describe an array of tumor-derived material found in blood plasma and other bodily fluids such as ascites, pleural fluid, saliva, and urine. It includes circulating tumors cells (CTCs), circulating nucleic acids including DNA, messenger RNA and micro RNAs, and extracellular vesicles (EVs). In this review, we discuss recent advancements in liquid biopsy for biomarker detection to help in diagnosis, prognosis, and planning of treatment of ovarian and endometrial cancer.
Collapse
Affiliation(s)
- Mark R Openshaw
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Terri P McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
8
|
Lemma S, Perrone AM, De Iaco P, Gasparre G, Kurelac I. Current methodologies to detect circulating tumor cells: a focus on ovarian cancer. Am J Cancer Res 2021; 11:4111-4126. [PMID: 34659879 PMCID: PMC8493391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023] Open
Abstract
Identification of circulating tumor cells (CTC) in liquid biopsies opens a window of opportunities for the optimization of clinical management of oncologic patients. In ovarian cancer (OC), which involves atypical routes of metastatic spread, CTC analyses may also offer novel insights about the mechanisms behind malignant progression of the disease. However, current methodologies struggle to precisely define CTC number in the peripheral blood of OC patients, and the isolation of viable cells for further characterization is still challenging. The biggest limitation is the lack of methodological standardization for OC CTC detection, preventing comprehensive definition of their clinical potential required for the transfer to practice. Here we describe and compare methods for CTC analysis that have been implemented for OC thus far, discussing pros, cons and improvements needed. We identify biophysical separation approaches as optimal for CTC enrichment. On the other hand, the identification of specific tumor antigens or gene transcripts, despite displaying drawbacks related to tumor heterogeneity, still remains the best approach for OC CTC detection.
Collapse
Affiliation(s)
- Silvia Lemma
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| | - Anna M Perrone
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna40138 Bologna, Italy
| | - Pierandrea De Iaco
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Division of Oncologic Gynecology, IRCCS-Azienda Ospedaliero-Universitaria di Bologna40138 Bologna, Italy
| | - Giuseppe Gasparre
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| | - Ivana Kurelac
- Unit of Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Study and Research Center on Gynecological Neoplasias, Department of Medical and Surgical Sciences (DIMEC), University of BolognaVia Massarenti 9, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna40138 Bologna, Italy
| |
Collapse
|
9
|
Future Screening Prospects for Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13153840. [PMID: 34359740 PMCID: PMC8345180 DOI: 10.3390/cancers13153840] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Ovarian cancer (OC) has the highest mortality rate of all gynecological cancers. It is usually diagnosed in late stages (FIGO III-IV), and therefore, overall survival is very poor. If diagnosed at the early stages, ovarian cancer has a 90% five-year survival rate. Liquid biopsy has a good potential to improve early ovarian cancer detection and is discussed in this review. Abstract Current diagnostic tools used in clinical practice such as transvaginal ultrasound, CA 125, and HE4 are not sensitive and specific enough to diagnose OC in the early stages. A lack of early symptoms and an effective asymptomatic population screening strategy leads to a poor prognosis in OC. New diagnostic and screening methods are urgently needed for early OC diagnosis. Liquid biopsies have been considered as a new noninvasive and promising method, using plasma/serum, uterine lavage, and urine samples for early cancer detection. We analyzed recent studies on molecular biomarkers with specific emphasis on liquid biopsy methods and diagnostic efficacy for OC through the detection of circulating tumor cells, circulating cell-free DNA, small noncoding RNAs, and tumor-educated platelets.
Collapse
|
10
|
Wu Z, Pan Y, Wang Z, Ding P, Gao T, Li Q, Hu M, Zhu W, Pei R. A PLGA nanofiber microfluidic device for highly efficient isolation and release of different phenotypic circulating tumor cells based on dual aptamers. J Mater Chem B 2021; 9:2212-2220. [PMID: 33616137 DOI: 10.1039/d0tb02988b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The isolation of specific and sensitive circulating tumor cells (CTCs) is significant for applying them in cancer diagnosis and monitoring. In this work, dual aptamer-modified poly(lactic-co-glycolic acid) (PLGA) nanofiber-based microfluidic devices were fabricated to achieve the highly efficient capture and specific release of epithelial and mesenchymal CTCs of ovarian cancer. Dual aptamer targeting epithelial cell adhesion molecules (EpCAM) and N-cadherin proteins to improve the capture sensitivity, bovine serum albumin (BSA) to guarantee the capture purity and the nanofibers to increase the capture efficiency via synchronously and effectively capturing the epithelial and mesenchymal CTCs with good capture specificity and sensitivity from blood samples were used. We used the target cells including the ovarian cancer A2780 cells (N-cadherin-high, EpCAM-low) and OVCAR-3 cells (EpCAM-high, N-cadherin-low) to test the devices, which exhibited good capture efficiency (91% for A2780 cells, 89% for OVCAR-3 cells), release efficiency (95% for A2780 cells, 88% for OVCAR-3 cells), and sensitivity for rare cells (92% for A2780 cells, 88% for OVCAR-3 cells). Finally, the clinical blood samples of ovarian cancer patients were detected by the PLGA nanofiber-based microfluidic device, and 1 to 13 CTCs were successfully confirmed to be captured with the help of immunofluorescence staining identification. The results exhibited that the dual aptamer-modified PLGA nanofiber-based microfluidic device used as a tool for CTC capture has the potential for clinical application to guide the diagnosis, treatment, and prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
- Zeen Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. and CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yue Pan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China. and CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Pi Ding
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qing Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Mingchao Hu
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Weipei Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
11
|
Timmerman D, Planchamp F, Bourne T, Landolfo C, du Bois A, Chiva L, Cibula D, Concin N, Fischerova D, Froyman W, Gallardo G, Lemley B, Loft A, Mereu L, Morice P, Querleu D, Testa AC, Vergote I, Vandecaveye V, Scambia G, Fotopoulou C. ESGO/ISUOG/IOTA/ESGE Consensus Statement on preoperative diagnosis of ovarian tumors. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:148-168. [PMID: 33794043 DOI: 10.1002/uog.23635] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The European Society of Gynaecological Oncology (ESGO), the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), the International Ovarian Tumour Analysis (IOTA) group and the European Society for Gynaecological Endoscopy (ESGE) jointly developed clinically relevant and evidence-based statements on the preoperative diagnosis of ovarian tumors, including imaging techniques, biomarkers and prediction models. ESGO/ISUOG/IOTA/ESGE nominated a multidisciplinary international group, including expert practising clinicians and researchers who have demonstrated leadership and expertise in the preoperative diagnosis of ovarian tumors and management of patients with ovarian cancer (19 experts across Europe). A patient representative was also included in the group. To ensure that the statements were evidence-based, the current literature was reviewed and critically appraised. Preliminary statements were drafted based on the review of the relevant literature. During a conference call, the whole group discussed each preliminary statement and a first round of voting was carried out. Statements were removed when consensus among group members was not obtained. The voters had the opportunity to provide comments/suggestions with their votes. The statements were then revised accordingly. Another round of voting was carried out according to the same rules to allow the whole group to evaluate the revised version of the statements. The group achieved consensus on 18 statements. This Consensus Statement presents these ESGO/ISUOG/IOTA/ESGE statements on the preoperative diagnosis of ovarian tumors and the assessment of carcinomatosis, together with a summary of the evidence supporting each statement.
Collapse
Affiliation(s)
- D Timmerman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - F Planchamp
- Clinical Research Unit, Institut Bergonie, Bordeaux, France
| | - T Bourne
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
- Department of Metabolism, Digestion and Reproduction, Queen Charlotte's & Chelsea Hospital, Imperial College, London, UK
| | - C Landolfo
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A du Bois
- Department of Gynaecology and Gynaecological Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - L Chiva
- Department of Gynaecology and Obstetrics, University Clinic of Navarra, Madrid, Spain
| | - D Cibula
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - N Concin
- Department of Gynaecology and Gynaecological Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Fischerova
- Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Prague, Czech Republic
| | - W Froyman
- Department of Obstetrics and Gynecology, University Hospitals KU Leuven, Leuven, Belgium
| | - G Gallardo
- Department of Radiology, University Clinic of Navarra, Madrid, Spain
| | - B Lemley
- Patient Representative, President of Kraefti Underlivet (KIU), Denmark
- Chair Clinical Trial Project of the European Network of Gynaecological Cancer Advocacy Groups, ENGAGe
| | - A Loft
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - L Mereu
- Department of Gynecology and Obstetrics, Gynecologic Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - P Morice
- Department of Gynaecological Surgery, Institut Gustave Roussy, Villejuif, France
| | - D Querleu
- Division of Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Obstetrics and Gynecologic Oncology, University Hospital, Strasbourg, France
| | - A C Testa
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - I Vergote
- Department of Obstetrics and Gynaecology and Gynaecologic Oncology, University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - V Vandecaveye
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Division of Translational MRI, Department of Imaging & Pathology KU Leuven, Leuven, Belgium
| | - G Scambia
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - C Fotopoulou
- Department of Gynecologic Oncology, Hammersmith Hospital, Imperial College, London, UK
| |
Collapse
|
12
|
Koshkin V, De Oliveira MB, Peng C, Ailles LE, Liu G, Covens A, Krylov SN. Multi-drug-resistance efflux in cisplatin-naive and cisplatin-exposed A2780 ovarian cancer cells responds differently to cell culture dimensionality. Mol Clin Oncol 2021; 15:161. [PMID: 34295468 PMCID: PMC8273925 DOI: 10.3892/mco.2021.2323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/02/2021] [Indexed: 01/20/2023] Open
Abstract
A primary reason for chemotherapy failure is chemoresistance, which is driven by various mechanisms. Multi-drug resistance (MDR) is one such mechanism that is responsible for drug extrusion from the intracellular space. MDR can be intrinsic and thus, may pre-exist the first application of chemotherapy. However, MDR may also be acquired during tumor exposure to chemotherapeutic agents. To understand whether cell clustering can influence intrinsic and acquired MDR, the present study assessed cultured monolayers (representing individual cells) and spheroids (representing clusters) formed by cisplatin-naïve (intrinsic MDR) and cisplatin-exposed (acquired MDR) lines of ovarian cancer A2780 cells by determining the cytometry of reaction rate constant (CRRC). MDR efflux was characterized using accurate and robust cell number vs. MDR efflux rate constant (kMDR) histograms. Both cisplatin-naïve and cisplatin-exposed monolayer cells presented unimodal histograms; the histogram of cisplatin-exposed cells was shifted towards a higher kMDR value suggesting greater MDR activity. Spheroids of cisplatin-naïve cells presented a bimodal histogram indicating the presence of two subpopulations with different MDR activity. In contrast, spheroids of cisplatin-exposed cells presented a unimodal histogram qualitatively similar to that of the monolayers of cisplatin-exposed cells but with a moderate shift towards greater MDR activity. A flow-cytometry assessment of multidrug resistance-associated protein 1 transporter levels in monolayers and dissociated spheroids revealed distributions similar to those of kMDR, thus, suggesting a plausible molecular mechanism for the observed differences in MDR activity. The observed greater effect of cell clustering on intrinsic rather than in acquired MDR can help guide the development of new therapeutic strategies targeting clusters of circulating tumor cells.
Collapse
Affiliation(s)
- Vasilij Koshkin
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Chun Peng
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Laurie E Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medicine, Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada
| | - Allan Covens
- Sunnybrook Odette Cancer Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sergey N Krylov
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
13
|
Timmerman D, Planchamp F, Bourne T, Landolfo C, du Bois A, Chiva L, Cibula D, Concin N, Fischerova D, Froyman W, Gallardo Madueño G, Lemley B, Loft A, Mereu L, Morice P, Querleu D, Testa AC, Vergote I, Vandecaveye V, Scambia G, Fotopoulou C. ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors. Int J Gynecol Cancer 2021; 31:961-982. [PMID: 34112736 PMCID: PMC8273689 DOI: 10.1136/ijgc-2021-002565] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
The European Society of Gynaecological Oncology (ESGO), the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), the International Ovarian Tumour Analysis (IOTA) group, and the European Society for Gynaecological Endoscopy (ESGE) jointly developed clinically relevant and evidence-based statements on the pre-operative diagnosis of ovarian tumors, including imaging techniques, biomarkers, and prediction models. ESGO/ISUOG/IOTA/ESGE nominated a multidisciplinary international group, including expert practising clinicians and researchers who have demonstrated leadership and expertise in the pre-operative diagnosis of ovarian tumors and management of patients with ovarian cancer (19 experts across Europe). A patient representative was also included in the group. To ensure that the statements were evidence-based, the current literature was reviewed and critically appraised. Preliminary statements were drafted based on the review of the relevant literature. During a conference call, the whole group discussed each preliminary statement and a first round of voting was carried out. Statements were removed when a consensus among group members was not obtained. The voters had the opportunity to provide comments/suggestions with their votes. The statements were then revised accordingly. Another round of voting was carried out according to the same rules to allow the whole group to evaluate the revised version of the statements. The group achieved consensus on 18 statements. This Consensus Statement presents these ESGO/ISUOG/IOTA/ESGE statements on the pre-operative diagnosis of ovarian tumors and the assessment of carcinomatosis, together with a summary of the evidence supporting each statement.
Collapse
Affiliation(s)
- Dirk Timmerman
- Gynecology and Obstetrics, University Hospitals KU Leuven, Leuven, Belgium .,Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Tom Bourne
- Gynecology and Obstetrics, University Hospitals KU Leuven, Leuven, Belgium.,Development and Regeneration, KU Leuven, Leuven, Belgium.,Metabolism Digestion and Reproduction, Queen Charlotte's & Chelsea Hospital, Imperial College, London, UK
| | - Chiara Landolfo
- Woman, Child and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Andreas du Bois
- Gynaecology and Gynaecological Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany
| | - Luis Chiva
- Gynaecology and Obstetrics, University Clinic of Navarra, Madrid, Spain
| | - David Cibula
- Obstetrics and Gynaecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nicole Concin
- Gynaecology and Gynaecological Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany.,Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Fischerova
- Obstetrics and Gynaecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Wouter Froyman
- Gynecology and Obstetrics, University Hospitals KU Leuven, Leuven, Belgium
| | | | - Birthe Lemley
- European Network of Gynaecological Cancers Advocacy Groups (ENGAGe) Executive Group, Prague, Czech Republic.,KIU - Patient Organisation for Women with Gynaecological Cancer, Copenhagen, Denmark
| | - Annika Loft
- Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Liliana Mereu
- Gynecology and Obstetrics, Gynecologic Oncology Unit, Santa Chiara Hospital, Trento, Italy
| | - Philippe Morice
- Gynaecological Surgery, Institut Gustave Roussy, Villejuif, France
| | - Denis Querleu
- Gynecologic Oncology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy.,Obstetrics and Gynecologic Oncology, University Hospital, Strasbourg, France
| | - Antonia Carla Testa
- Woman, Child and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy.,Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ignace Vergote
- Obstetrics and Gynaecology and Gynaecologic Oncology, University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Vincent Vandecaveye
- Radiology, University Hospitals Leuven, Leuven, Belgium.,Division of Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Giovanni Scambia
- Woman, Child and Public Health, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy.,Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | |
Collapse
|
14
|
Timmerman D, Planchamp F, Bourne T, Landolfo C, du Bois A, Chiva L, Cibula D, Concin N, Fischerova D, Froyman W, Gallardo G, Lemley B, Loft A, Mereu L, Morice P, Querleu D, Testa C, Vergote I, Vandecaveye V, Scambia G, Fotopoulou C. ESGO/ISUOG/IOTA/ESGE Consensus Statement on preoperative diagnosis of ovarian tumours. Facts Views Vis Obgyn 2021; 13:107-130. [PMID: 34107646 PMCID: PMC8291986 DOI: 10.52054/fvvo.13.2.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The European Society of Gynaecological Oncology (ESGO), the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), the International Ovarian Tumour Analysis (IOTA) group and the European Society for Gynaecological Endoscopy (ESGE) jointly developed clinically relevant and evidence-based statements on the preoperative diagnosis of ovarian tumours, including imaging techniques, biomarkers and prediction models. ESGO/ISUOG/IOTA/ESGE nominated a multidisciplinary international group, including expert practising clinicians and researchers who have demonstrated leadership and expertise in the preoperative diagnosis of ovarian tumours and management of patients with ovarian cancer (19 experts across Europe). A patient representative was also included in the group. To ensure that the statements were evidence-based, the current literature was reviewed and critically appraised. Preliminary statements were drafted based on the review of the relevant literature. During a conference call, the whole group discussed each preliminary statement and a first round of voting was carried out. Statements were removed when a consensus among group members was not obtained. The voters had the opportunity to provide comments/suggestions with their votes. The statements were then revised accordingly. Another round of voting was carried out according to the same rules to allow the whole group to evaluate the revised version of the statements. The group achieved consensus on 18 statements. This Consensus Statement presents these ESGO/ISUOG/IOTA/ESGE statements on the preoperative diagnosis of ovarian tumours and the assessment of carcinomatosis, together with a summary of the evidence supporting each statement.
Collapse
|
15
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
16
|
Huang C, Lin X, He J, Liu N. Enrichment and detection method for the prognostic value of circulating tumor cells in ovarian cancer: A meta-analysis. Gynecol Oncol 2021; 161:613-620. [PMID: 33674144 DOI: 10.1016/j.ygyno.2021.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Recent studies have revealed that circulating tumor cells (CTCs) might predict bad prognosis, but the results were conflicting. Sampling time, treatment, enrichment method and detection method also varied. We aimed to evaluate whether patients with CTCs in peripheral blood have bad survival outcomes with consideration of the above four aspects. METHODS Relevant studies were searched on Pubmed, Embase and the Cochrane Library. Studies of CTCs involving survival data available were identified for a systematic review and meta-analysis. HRs and 95% CIs for PFS and OS were extracted directly or from the Kaplan-Meier survival curves by the Engauge Digitizer v4.1. Subgroup analyses were performed to evaluate the effect of sampling time, treatment, enrichment method and detection method. RESULTS Two clinical trials and thirteen retrospective studies with a total of 1285 patients were included. CTCs significantly correlated with OS (HR = 1.77, 95%CI:1.42-2.21, p < 0.00001 and PFS (HR = 1.53, 95%CI:1.26-1.86, p < 0.0001). Subgroup analyses showed that CTCs were significant associated with OS in the "Pre-therapy" subgroup (HR = 1.79, 95%CI:1.43-2.24, p < 0.00001), the "Surgery" group (HR = 1.82, 95%CI:1.42-2.33, p < 0.00001), and the "RT-PCR"subgroup (HR = 2.29, 95%CI:1.53-3.42, p < 0.0001). While for enrichment method, CTCs significantly correlated with OS in the"Physical method" subgroup (HR = 1.94, 95%CI:1.21-3.09, p = 0.006) and the "Immunological method" subgroup (HR = 1.84, 95%CI:1.37-2.48, p < 0.0001). CONCLUSIONS The presence of CTCs prior to the treatment indicated worse OS and PFS and CTCs might be predictive biomarker for ovarian cancer patients . CTCs detected using RT-PCR seem to be associated with poorer OS and PFS in patients with ovarian cancer.
Collapse
Affiliation(s)
- Chengying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Lin
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinmei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|