1
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2024:100729. [PMID: 39675508 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with oncological PDT, as exemplified here by the combined treatment with antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, 314001 Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, 3584 CS Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Yang F, Zhang S, Zhang X, Xu C, Hou X, Shang J, Sun B, Shu X, Liu Y, Li Y, Wang H. Liposomal chlorin e6-mediated photodynamic therapy induces cell pyroptosis and promotes anti-tumor immune effects in breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113047. [PMID: 39504926 DOI: 10.1016/j.jphotobiol.2024.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Pyroptosis is a form of inflammatory cell death that has been demonstrated to trigger anti-tumor immune responses. Photodynamic therapy (PDT) is an innovative non-invasive treatment for tumors that effectively destroys tumor cells and boosts anti-tumor immune response. The ability of PDT to trigger pyroptosis and its mechanism of action are yet uncertain. In this study, we firstly verified that PDT effectively eliminates tumor cells. TEM and Western blot analysis demonstrated that tumor cells underwent pyroptosis following PDT therapy. Lipo-Ce6 mostly accumulates in the mitochondria of 4 T1 cells, and abundant ROS generated during PDT severely damage cell mitochondria, leading to the release of mitochondrial DNA, triggering the inflammasome caspase-1 signaling cascade, and ultimately causing cell pyroptosis, in addition NAC (a scavenger of ROS) and EB (a scavenger of mitochondrial DNA) can effectively prevent cell pyroptosis by PDT, which indicated the key role of ROS in PDT induced pyroptosis. Moreover, we also found PDT tiggered immunogenic cell death (ICD). Fourthermore, PDT can efficiently suppress tumor growth, trigger ICD and induce cell pyroptosis in mice. The introducing of immune checkpoint inhibitor BMS202 significantly boosts the tumor inhibition rate and promotes the infiltration of immune cells into the tumor. The body weight and HE. staining of normal organs primarily indicated the safety of this combined strategy. Our study demonstrated that PDT induced cell pyroptosis through mitochondrial oxidative damage and PDT induced pyroptosis effectively boost anti-cancer immunity, the combination of PDT and immune checkpoint inhibitor may be a promising clinical tumor treatment approaches.
Collapse
Affiliation(s)
- Fang Yang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Medical College of Guangxi University, Nanning 530004, China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Xiao Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Chenchen Xu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiaoying Hou
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Jinting Shang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| | - Yixiang Li
- Medical College of Guangxi University, Nanning 530004, China.
| | - Haiping Wang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
3
|
Zhang J, Chang Y, Liu S, Tuo J, Xu Z, Ying J, Zhu Y, Shi Z, Zouboulis CC, Jiang M, Wang Q, Xiang L. ALA-PDT promotes IL-1β secretion from human SZ95 sebocytes via activation of the NLRP3 inflammasome. Photodiagnosis Photodyn Ther 2024; 46:104007. [PMID: 38336152 DOI: 10.1016/j.pdpdt.2024.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) is an effective treatment for pilosebaceous inflammatory diseases, such as acne vulgaris. In this study, we explored ALA-PDT's mechanisms against acne in vitro. METHODS We treated human SZ95 sebocytes with ALA (0.2 mM) and subjected them to varied PDT doses (0, 5, 10, 20 J/cm²) over 12 h. We assessed cell viability post-treatment using the Annexin V FITC/PI apoptosis kit. ROS accumulation in the sebocytes was detected with a DCFDA probe. We quantified NLRP3 and caspase-1 mRNA via quantitative PCR and determined IL-1β release following ALA-PDT by ELISA. Western blotting helped identify the levels of proteins associated with pyroptosis (NLRP3, caspase-1, and IL-1β). To elucidate the mechanisms, we re-evaluated these parameters after administering various concentrations of NAC antioxidants (0, 0.4, 2, 10 mM) and the caspase inhibitor Z-VAD-FMK (0, 5, 10, 20 μM). RESULTS Increasing PDT dose inversely affected SZ95 sebocyte survival, with a corresponding rise in ROS and pyroptosis-related proteins (NLRP3, caspase-1, and IL-1β). Furthermore, NAC and Z-VAD-FMK modulated the expression and secretion of these molecules in a dose-responsive manner. CONCLUSION Our findings suggest ALA-PDT's potential mechanism of action on sebaceous glands could involve ROS induction, leading to NLRP3 inflammasome assembly, thereby heightening caspase-1 activation and IL-1β secretion. This cascade may amplify the local inflammatory response to break chronic inflammation in acne vulgaris treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yufeng Chang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Harvard Medical School, Boston, MA, USA
| | - Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jiang Tuo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Zhongyi Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jiayi Ying
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yijian Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Zhengzhou Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Qianqian Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
4
|
Chen D, Wang B, Zhao Z, Zhang G, Wang P, Zhang L, Liu X, Zhang H, Zeng Q, Wang X. Modified 5-aminolevulinic acid photodynamic therapy induces cutaneous squamous cell carcinoma cell pyroptosis via the JNK signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119603. [PMID: 37805058 DOI: 10.1016/j.bbamcr.2023.119603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Modified 5-aminolevulinic acid photodynamic therapy (M-PDT) is a novel therapeutic modality for cutaneous squamous cell carcinoma (cSCC) that is reported to be effective and well tolerated. However, the mechanisms underlying its antitumor effects are not fully understood. In this research, we investigated the effects of M-PDT on pyroptosis, a form of programmed cell death characterized by cell swelling, ruptures of cell membrane, and inflammatory cytokine release, in two human cSCC cell lines, SCL-1 and HSC-5. We found that M-PDT triggered pyroptosis in a dose-dependent manner, as evidenced by increased lactate dehydrogenase release, propidium iodide staining, and expression of pyroptosis-related proteins, such as NLR family pyrin domain containing 3 (NLRP3), N-terminal of gasdermin D (N-GSDMD), cleaved caspase-1, and mature interleukin 1 beta (IL-1B) in both cell lines. This process was inhibited by treatment with MCC950, an NLRP3-specific inhibitor, suggesting the involvement of the NLRP3 inflammasome in M-PDT-induced pyroptosis. We also demonstrated that M-PDT activated c-Jun N-terminal kinase (JNK) signaling, which is required for pyroptosis induction, as treatment with SP600125, a JNK inhibitor, suppressed the expression of pyroptosis-related proteins after M-PDT. JNK activation enhanced M-PDT-induced pyroptosis, highlighting the significance of the JNK pathway in M-PDT. Moreover, M-PDT increased intracellular reactive oxygen species (ROS) levels, which are responsible for JNK activation and pyroptosis induction. In summary, our results revealed that M-PDT triggers pyroptosis through ROS-mediated JNK activation and subsequent NLRP3 inflammasome activation in cSCC cells, providing a better understanding of the molecular mechanism of M-PDT and promoting its clinical application.
Collapse
Affiliation(s)
- Diyan Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bo Wang
- Avera Medical Group Dermatology, Aberdeen, SD 57401, USA
| | - Zijun Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
6
|
Liu C, Wu K, Li J, Mu X, Gao H, Xu X. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: Current progress and future prospects. Biomed Pharmacother 2023; 158:114135. [PMID: 36535198 DOI: 10.1016/j.biopha.2022.114135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment. This document reviews the advantages and shortcomings of nanoparticles such as liposomes, polymeric nanoparticle,inorganic nanoparticle, nano-metals and nano-alloys, carbon dots, nano-micelles, dendrimer, nano-capsule, bio-Nanomaterials in the diagnosis and treatment of CCA and discuss the current challenges in of nanoplatforms for CCA.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Cerro PA, Mascaraque M, Gallego-Rentero M, Almenara-Blasco M, Nicolás-Morala J, Santiago JL, González S, Gracia-Cazaña T, Juarranz Á, Gilaberte Y. Tumor microenvironment in non-melanoma skin cancer resistance to photodynamic therapy. Front Oncol 2022; 12:970279. [PMID: 36338755 PMCID: PMC9634550 DOI: 10.3389/fonc.2022.970279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Non-melanoma skin cancer has recently seen an increase in prevalence, and it is estimated that this grow will continue in the coming years. In this sense, the importance of therapy effectiveness has increased, especially photodynamic therapy. Photodynamic therapy has attracted much attention as a minimally invasive, selective and repeatable approach for skin cancer treatment and prevention. Although its high efficiency, this strategy has also faced problems related to tumor resistance, where the tumor microenvironment has gained a well-deserved role in recent years. Tumor microenvironment denotes a wide variety of elements, such as cancer-associated fibroblasts, immune cells, endothelial cells or the extracellular matrix, where their interaction and the secretion of a wide diversity of cytokines. Therefore, the need of designing new strategies targeting elements of the tumor microenvironment to overcome the observed resistance has become evident. To this end, in this review we focus on the role of cancer-associated fibroblasts and tumor-associated macrophages in the resistance to photodynamic therapy. We are also exploring new approaches consisting in the combination of new and old drugs targeting these cells with photodynamic therapy to enhance treatment outcomes of non-melanoma skin cancer.
Collapse
Affiliation(s)
- Paulina A. Cerro
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Marta Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - María Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Manuel Almenara-Blasco
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Jimena Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
| | - Juan Luis Santiago
- Servicio de Dermatología, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - Ángeles Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experminetal Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigaciones Sanitarias, IRYCIS, Madrid, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
- *Correspondence: Ángeles Juarranz, ; Yolanda Gilaberte,
| |
Collapse
|
8
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
9
|
Zhang D, Xie Q, Liu Y, Li Z, Li H, Li S, Li Z, Cui J, Su M, Jiang X, Xue P, Bai M. Photosensitizer IR700DX-6T- and IR700DX-mbc94-mediated photodynamic therapy markedly elicits anticancer immune responses during treatment of pancreatic cancer. Pharmacol Res 2021; 172:105811. [PMID: 34390852 DOI: 10.1016/j.phrs.2021.105811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS IR700DX-6T and IR700DX-mbc94 are two chemically synthesized photosensitizers (PSs) that target the translocator protein (TSPO) and type 2 cannabinoid receptor (CB2R), respectively, for photodynamic therapy (PDT) of cancer. Recently, we found that IR700DX-6T and IR700DX-mbc94 exhibited high selectivity and efficiency in PDT for breast cancer and malignant astrocytoma. Yet, the phototherapeutic effects of the PSs on pancreatic cancer and underlying mechanisms remain unknown. This study investigated the effect of IR700DX-6T- or IR700DX-mbc94-PDT on pancreatic cancer and whether the treatment involves eliciting anticancer immune responses in support of superior therapeutic efficacy. METHODS Four pancreatic cancer cell lines were used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies regarding the therapeutic effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT on pancreatic cancer. The immunostimulatory or immunosuppressive effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT were examined by detecting CD8+ T cells, regulatory T cells (Tregs), and dendritic cells (DCs) using flow cytometry and immunohistochemistry (IHC). RESULTS TSPO and CB2R were markedly upregulated in pancreatic cancer cells and tissues. Both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. Notably, assessment of anticancer immune responses revealed that both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly induced CD8+ T cells, promoted maturation of DCs, and suppressed Tregs, with stronger effects exerted by IR700DX-6T-PDT compared to IR700DX-mbc94-PDT. CONCLUSIONS IR700DX-6T-PDT and IR700DX-mbc94-PDT involves eliciting anticancer immune responses. Our study has also implicated that PDT in combination with immunotherapy holds promise to improve therapeutic efficacy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qing Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zongyan Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Haiyan Li
- Department of Breast Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510650, China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhen Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Fourth General Surgery Department, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jing Cui
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Meng Su
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Simultaneous Targeting Tumor Cells and Cancer-Associated Fibroblasts with a Paclitaxel-Hyaluronan Bioconjugate: In Vitro Evaluation in Non-Melanoma Skin Cancer. Biomedicines 2021; 9:biomedicines9060597. [PMID: 34073987 PMCID: PMC8225214 DOI: 10.3390/biomedicines9060597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) facilitate many aspects of cancer development by providing a structural framework rich in bioactive compounds. There are emerging studies proposing a combination of conventional anti-cancer therapies directed against neoplastic cells to molecules targeting tumor microenvironments. METHODS The study evaluated the pharmacological properties of the anti-tumor agent paclitaxel conjugated to hyaluronic acid (HA) regarding non-melanoma skin cancer (NMSC) and the surrounding fibroblasts. This molecule, named Oncofid-P20 (Onco-P20), preferentially targets cells expressing high levels of CD44, the natural ligand of HA. RESULTS Consistent with paclitaxel's mechanism of action involving interference with the breakdown of microtubules during cell division, highly sensitive carcinoma cells rapidly underwent apoptotic cell death. Interestingly, less sensitive cells, such as dermal fibroblasts, resisted the Onco-P20 treatment and experienced a prolonged growth arrest characterized by morphological change and significant modification of the gene expression profile. Onco-P20-treated fibroblasts exhibited reduced growth factor production, downmodulation of the Wnt signaling pathway, and the acquisition of a marked pro-inflammatory profile. Independently of direct exposure to taxol, in the presence of Onco-P20-treated fibroblasts or in their conditioned medium, carcinoma cells had a reduced proliferation rate. Similar to NHF, fibroblasts isolated from skin cancer lesions or from adjacent tissue acquired anti-neoplastic activity under Onco-P20 treatment. CONCLUSION Collectively, our data demonstrate that Onco-P20, exerting both a direct and an NHF-mediated indirect effect on carcinoma cells, is a candidate for an innovative therapy alternative to surgery for the treatment of NMSC.
Collapse
|
11
|
Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers (Basel) 2021; 13:cancers13061399. [PMID: 33808627 PMCID: PMC8003545 DOI: 10.3390/cancers13061399] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.
Collapse
Affiliation(s)
- Rushikesh S. Joshi
- School of Medicine, University of California, San Diego, La Jolla, CA 92092, USA;
| | | | - Sweta Sudhir
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Matheus P. Pereira
- School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +1-415-514-9820
| |
Collapse
|