1
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Lee IY, Wang TC, Kuo YJ, Shih WT, Yang PR, Hsu CM, Lin YS, Kuo RS, Wu CY. Astragalus Polysaccharides and Metformin May Have Synergistic Effects on the Apoptosis and Ferroptosis of Lung Adenocarcinoma A549 Cells. Curr Issues Mol Biol 2024; 46:7782-7794. [PMID: 39194678 DOI: 10.3390/cimb46080461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Chung Wang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Jen Kuo
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pei-Rung Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Ming Hsu
- Department of Otolaryngology-Head and Neck Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Cancer Center, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ren-Shyang Kuo
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Liang H, Tao S, Wang Y, Zhao J, Yan C, Wu Y, Liu N, Qin Y. Astragalus polysaccharide: implication for intestinal barrier, anti-inflammation, and animal production. Front Nutr 2024; 11:1364739. [PMID: 38757131 PMCID: PMC11096541 DOI: 10.3389/fnut.2024.1364739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Intestine is responsible for nutrients absorption and plays a key role in defending against various dietary allergens, antigens, toxins, and pathogens. Accumulating evidence reported a critical role of intestine in maintaining animal and human health. Since the use of antibiotics as growth promoters in animal feed has been restricted in many countries, alternatives to antibiotics have been globally investigated, and polysaccharides are considered as environmentally friendly and promising alternatives to improve intestinal health, which has become a research hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), a biological macromolecule, is extracted from astragalus and has been reported to exhibit complex biological activities involved in intestinal barrier integrity maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) production, and immune response regulation, which are critical for intestine health. The biological activity of APS is related to its chemical structure. In this review, we outlined the source and structure of APS, highlighted recent findings on the regulation of APS on physical barrier, biochemical barrier, immunological barrier, and immune response as well as the latest progress of APS as an antibiotic substitute in animal production. We hope this review could provide scientific basis and new insights for the application of APS in nutrition, clinical medicine and health by understanding particular effects of APS on intestine health, anti-inflammation, and animal production.
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Siming Tao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanya Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jing Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Chang Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Liu X, Sun K, Jin X, Wu X, Xia M, Sun Y, Feng L, Li G, Wan X, Chen C. Review on active components and mechanism of natural product polysaccharides against gastric carcinoma. Heliyon 2024; 10:e27218. [PMID: 38449642 PMCID: PMC10915412 DOI: 10.1016/j.heliyon.2024.e27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
One of the malignant tumors with a high occurrence rate worldwide is gastric carcinoma, which is an epithelial malignant tumor emerging from the stomach. Natural product polysaccharides are a kind of natural macromolecular polymers, which have the functions of regulating immunity, anti-oxidation, anti-fatigue, hypoglycemia, etc. Natural polysaccharides have remarkable effectiveness in preventing the onset, according to studies, and development of gastric cancer at both cellular and animal levels. This paper summarizes the inhibitory mechanisms and therapeutic significance of plant polysaccharides, fungi polysaccharides, and algal polysaccharides in natural product polysaccharides on the occurrence and development of gastric cancer in recent years, providing a theoretical basis for the research, development, and medicinal value of polysaccharides.
Collapse
Affiliation(s)
- Xinze Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Kaijing Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xinmin Wu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Mingjie Xia
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Ying Sun
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guangzhe Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xilin Wan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Kim SY, Park JE, Lee HJ, Sim DY, Ahn CH, Park SY, Shim BS, Kim B, Lee DY, Kim SH. Astragalus membranaceus Extract Induces Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Heat Shock Protein 27 and Androgen Receptor in Prostate Cancers. Int J Mol Sci 2024; 25:2799. [PMID: 38474045 DOI: 10.3390/ijms25052799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus membranaceus (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure. Consistently, WAM significantly increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive LNCaP cells. WAM decreased the phosphorylation of HSP27 on Ser82 and inhibited the expression of the AR and prostate-specific antigen (PSA), along with reducing the nuclear translocation of p-HSP27 and the AR via the disturbed binding of p-HSP27 with the AR in LNCaP cells. WAM consistently inhibited the expression of the AR and PSA in dihydrotestosterone (DHT)-treated LNCaP cells. WAM also suppressed AR stability, both in the presence and absence of cycloheximide, in LNCaP cells. Taken together, these findings provide evidence that WAM induces apoptosis via the inhibition of HSP27/AR signaling in prostate cancer cells and is a potent anticancer candidate for prostate cancer treatment.
Collapse
Affiliation(s)
- Seok-Young Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Xu Q, Cheng W, Wei J, Ou Y, Xiao X, Jia Y. Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment. Discov Oncol 2023; 14:179. [PMID: 37741920 PMCID: PMC10517906 DOI: 10.1007/s12672-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinrui Wei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yan Ou
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
7
|
Chen H, Hu Y, Wu C, Liu K, Feng R, Yang M, Zhao M, Huang B, Li Y. Mesoporous Titanium Dioxide Nanoparticles-Poly(N-isopropylacrylamide) Hydrogel Prepared by Electron Beam Irradiation Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells. Polymers (Basel) 2023; 15:3659. [PMID: 37765514 PMCID: PMC10535267 DOI: 10.3390/polym15183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
An urgently needed approach for the treatment of oral squamous cell carcinoma (OSCC) is the development of novel drug delivery systems that offer targeted specificity and minimal toxic side effects. In this study, we developed an injectable and temperature-sensitive composite hydrogel by combining mesoporous titanium dioxide nanoparticles (MTNs) with Poly(N-isopropylacrylamide) (PNIPAAM) hydrogel to serve as carriers for the model drug Astragalus polysaccharide (APS) using electron beam irradiation. The characteristics of MTNs, including specific surface area and pore size distribution, were analyzed, and the characteristics of MTNs-APS@Hyaluronic acid (HA), such as microscopic morphology, molecular structure, crystal structure, and loading efficiency, were examined. Additionally, the swelling ratio, gel fraction, and microscopic morphology of the composite hydrogel were observed. The in vitro cumulative release curve was plotted to investigate the sustained release of APS in the composite hydrogels. The effects on the proliferation, migration, and mitochondrial membrane potential of CAL-27 cells were evaluated using MTT assay, scratch test, and JC-1 staining. The results indicated successful preparation of MTNs with a specific surface area of 147.059 m2/g and an average pore diameter of 3.256 nm. The composite hydrogel displayed temperature-sensitive and porous characteristics, allowing for slow release of APS. Furthermore, it effectively suppressed CAL-27 cells proliferation, migration, and induced changes in mitochondrial membrane potential. The addition of autophagy inhibitors chloroquine (CQ) and 3-methyladenine (3-MA) attenuated the migration inhibition (p < 0.05).
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuzhu Hu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Chizhou Wu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Mingzhe Yang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Mengyao Zhao
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianing Medical College, Hubei University of Science and Technology, Xianning 437100, China; (H.C.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
8
|
Li J, Wang YF, Shen ZC, Zou Q, Lin XF, Wang XY. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity. Int J Biol Macromol 2023; 232:123390. [PMID: 36706878 DOI: 10.1016/j.ijbiomac.2023.123390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Astragalus Polysaccharide Promotes Doxorubicin-Induced Apoptosis by Reducing O-GlcNAcylation in Hepatocellular Carcinoma. Cells 2023; 12:cells12060866. [PMID: 36980207 PMCID: PMC10047337 DOI: 10.3390/cells12060866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
The toxicity and side effects of chemotherapeutic drugs remain a crucial obstacle to the clinical treatment of hepatocellular carcinoma (HCC). Identifying combination therapy from Chinese herbs to enhance the sensitivity of tumors to chemotherapeutic drugs is of particular interest. Astragalus polysaccharide (APS), one of the natural active components in Astragalus membranaceus, has been reported to exhibit anti-tumor properties in diverse cancer cell lines. The aim of this study was to determine the effect of APS on Doxorubicin (Dox)-induced apoptosis in HCC and the underlying mechanism. The results showed that APS dose-dependently promoted Dox-induced apoptosis and enhanced endoplasmic reticulum (ER) stress. Additionally, APS decreased the mRNA level and protein stability of O-GlcNAc transferase (OGT), and increased the O-GlcNAcase (OGA) expression. Furthermore, OGT lentiviral transfection or PugNAc (OGA inhibitor) treatment reversed the ER stress and apoptosis induced by the combination of Dox and APS. A xenograft tumor mouse model confirmed that the combination of APS and Dox showed an advantage in inhibiting tumor growth in vivo. These findings suggested that APS promoted Dox-induced apoptosis in HCC cells through reducing the O-GlcNAcylation, which led to the exacerbation of ER stress and activation of apoptotic pathways.
Collapse
|
10
|
Inhibitory Effect of Astragalus Polysaccharide on Premetastatic Niche of Lung Cancer through the S1PR1-STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4010797. [PMID: 36714534 PMCID: PMC9883101 DOI: 10.1155/2023/4010797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/22/2023]
Abstract
As a common malignant tumor, the morbidity and mortality of lung cancer have been rising in recent years. The concept of "premetastatic niche" may lead to a revolutionary change in antitumor metastasis therapeutic strategies. Traditional Chinese medicine with multitargets and lower poisonous agents may be a potentially effective means to intervene in the "premetastatic niche (PMN)" to prevent and treat tumor metastasis. Astragalus polysaccharide (APS) is a substance with strong immune activity in Astragalus membranaceus that has excellent biological activities such as immunomodulation, anti-inflammatory, and antitumor. In this study, we constructed a tumor lung metastasis animal model to explore the intervention mechanism of APS on the premetastatic niche. We found that APS inhibited the formation of the lung premetastatic niche and inhibited the recruitment of myeloid-derived suppressor cells (MDSCs) in the lung. Mechanistically, we showed that the proteins and gene expression of S1PR1, STAT3, and p-STAT3 in the S1PR1/STAT3 signaling pathway were suppressed by APS. In line with the above findings, our results confirmed that APS may inhibit the accumulation of MDSCs in the premetastatic niche through the intervention of the S1PR1-STAT3 signaling pathway to achieve the antitumor effect.
Collapse
|
11
|
Hu J, Cheng M, Li Y, Shi B, He S, Yao Z, Jiang J, Yu H, He Z, Zhao Y, Zheng H, Hua B, Liu R. Ginseng-containing traditional medicine preparations in combination with fluoropyrimidine-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis. PLoS One 2023; 18:e0284398. [PMID: 37068063 PMCID: PMC10109524 DOI: 10.1371/journal.pone.0284398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Ginseng-containing traditional medicine preparations (G-TMPs) in combination with fluoropyrimidine-based chemotherapy (FBC) are well-known treatments for advanced gastric cancer (AGC), with a superior efficacy to FBC alone. However, evidence regarding their efficacy remains limited. The purpose of this meta-analysis is to evaluate the efficacy and safety of G-TMPs in combination with FBC for the treatment of AGC. METHODS Eight electronic databases were searched for randomized controlled trials (RCTs) using G-TMPs with FBC for the treatment of AGC. The primary outcome included the tumor response, while the secondary outcomes included the quality of life (QoL), proportions of peripheral blood lymphocytes, adverse drug reactions (ADRs), and levels of cancer biomarkers. The quality of evidence for each outcome was assessed using GRADE profilers. RESULTS A total of 1,960 participants were involved in the 26 RCTs included. Patients treated with FBC plus G-TMPs had better objective response (risk ratio [RR] = 1.23, 95% confidence interval [CI]: 1.13 to 1.35, p < 0.00001) and disease control (RR = 1.13, 95% CI: 1.08 to 1.19, p < 0.00001) rates than those treated with FBC alone. Additionally, the combination group had a better QoL, higher proportions of CD3+ T cells, CD4+ T cells, and natural killer cells, as well as a higher CD4+/CD8+ T-cell ratio. Furthermore, lower levels of CA19-9, CA72-4, and CEA were confirmed in the combination treatment group. In addition, G-TMPs reduced the incidence of ADRs during chemotherapy. CONCLUSION In combination with FBC, G-TMPs can potentially enhance efficacy, reduce ADRs, and improve prognosis for patients with AGC. However, high-quality randomized studies remain warranted. SYSTEMATIC REVIEW REGISTRATION PROSPERO Number: CRD42021264938.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Cheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yue Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shulin He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ziang Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huibo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Feng Y, Cao H, Song Z, Chen L, Wang D, Gao R. Qi Ling decoction enhances abiraterone treatment via suppression of autophagy in castration resistant prostate cancer. Aging (Albany NY) 2022; 14:9942-9950. [PMID: 36541904 PMCID: PMC9831723 DOI: 10.18632/aging.204427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Abiraterone acetate has exhibited impressive results in improving progression-free survival of patients with metastatic castration-resistant prostate cancer. However, many patients may develop abiraterone resistance with a variable duration of response. Hence, identifying a remedy to overcome abiraterone resistance is critical for patients with castration-resistant prostate cancer. In this study, we aim to explore the potential of Qi Ling decoction (QLD), a traditional Chinese medicine, in attenuating abiraterone resistance in prostate cancer. Cell viability and apoptosis were respectively measured by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The protein levels were assessed by Western blotting assay. Autophagosome formation was quantified by counting LC3 puncta. We found that QLD was capable of promoting abiraterone-induced apoptosis and cell death of PC3-AbiR and DU145-AbiR cells in vitro. A combination of QLD and abiraterone yielded a better tumor inhibition effect than QLD alone and abiraterone alone. Further investigation revealed that QLD restored the abiraterone sensitivity of PC3-AbiR and DU145-AbiR cells through modulating autophagy. These findings suggest that QLD might serve as a potential remedy to enhance the therapeutical effect of abiraterone for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Zixi Song
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Dan Wang
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Renjie Gao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| |
Collapse
|
13
|
Tan Y, Wang H, Xu B, Zhang X, Zhu G, Ge Y, Lu T, Gao R, Li J. Chinese herbal medicine combined with oxaliplatin-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis of contributions of specific medicinal materials to tumor response. Front Pharmacol 2022; 13:977708. [PMID: 36091754 PMCID: PMC9453215 DOI: 10.3389/fphar.2022.977708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The incidence and mortality of gastric cancer ranks among the highest, and the 5-year survival rate of advanced gastric cancer (AGC) is less than 10%. Currently, chemotherapy is the main treatment for AGC, and oxaliplatin is an important part of the commonly used chemotherapy regimen for AGC. A large number of RCTs have shown that Chinese herbal medicine (CHM) combined with oxaliplatin-based chemotherapy can improve objective response rate (ORR) and disease control rate (DCR), reduce the toxic and side effects of chemotherapy. There is currently a lack of systematic evaluation of the evidence to account for the efficacy and safety of CHM combined with oxaliplatin-based chemotherapy in AGC. Therefore, we carried out this study and conducted the sensitivity analysis on the herbal composition to explore the potential anti-tumor efficacy. Methods: Databases of PubMed, EMBASE, CENTRAL, Web of Science, the Chinese Biomedical Literature Database, the China National Knowledge Infrastructure, the Wanfang database, and the Chinese Scientific Journals Database were searched from their inception to April 2022. RCTs evaluating the efficacy of CHM combined with oxaliplatin-based chemotherapy on AGC were included. Stata 16 was used for data synthesis, RoB 2 for quality evaluation of included RCTs, and GRADE for quality of synthesized evidence. Additional sensitivity analysis was performed to explore the potential anti-tumor effects of single herbs and combination of herbs. Results: Forty trials involving 3,029 participants were included. Most included RCTs were assessed as "Some concerns" of risk of bias. Meta-analyses showed that compare to oxaliplatin-based chemotherapy alone, that CHM combined with oxaliplatin-based chemotherapy could increase the objective response rate (ORR) by 35% [risk ratio (RR) = 1.35, 95% confidence intervals (CI) (1.25, 1.45)], and disease control rate (DCR) by 12% [RR = 1.12, 95% CI (1.08, 1.16)]. Subgroup analysis showed that compare to SOX, FOLFOX, and XELOX regimens alone, CHM plus SOX, CHM plus FOLFOX, and CHM plus XELOX could significantly increase the ORR and DCR. Sensitivity analysis identified seven herbs of Astragalus, Liquorice, Poria, Largehead Atractylodes, Chinese Angelica, Codonopsis, and Tangerine Peel with potentials to improve tumor response of oxaliplatin-based chemotherapy in AGC. Conclusion: Synthesized evidence showed moderate certainty that CHM plus oxaliplatin-based chemotherapy may promote improvement in tumor response in AGC. CHM treatment is safe for AGC. Due to the poor quality of included RCTs and small samplesizes, the quality of synthesized evidence was not high. Specific combinations of herbs appeared to produce higher contributions to ORR than the herb individually. Each of this seven above mentioned herbs has been shown in experimental studies to potentially contribute to the improvement of tumor response. To support this conclusion, these seven herbs are worthy of further clinical research. Systematic Review Registration: [http://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=262595], identifier [CRD42022262595].
Collapse
Affiliation(s)
- Ying Tan
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Heping Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxiao Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuansha Ge
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Taicheng Lu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruike Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Wang LH, Chang CC, Cheng CY, Liang YJ, Pei D, Sun JT, Chen YL. MCRS1 Expression Regulates Tumor Activity and Affects Survival Probability of Patients with Gastric Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061502. [PMID: 35741311 PMCID: PMC9221628 DOI: 10.3390/diagnostics12061502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide and the third most common cause of cancer-related deaths. Surgery remains the first-choice treatment. Chemotherapy is considered in the middle and advanced stages, but has limited success. Microspherule protein 1 (MCRS1, also known as MSP58) is a protein originally identified in the nucleus and cytoplasm that is involved in the cell cycle. High expression of MCRS1 increases tumor growth, invasiveness, and metastasis. The mechanistic relationships between MCSR1 and proliferation, apoptosis, angiogenesis, and epithelial–mesenchymal transition (EMT) remain to be elucidated. We clarified these relationships using immunostaining of tumor tissues and normal tissues from patients with gastric cancer. High MCRS1 expression in gastric cancer positively correlated with Ki-67, Caspase3, CD31, Fibronectin, pAKT, and pAMPK. The hazard ratio of high MCRS1 expression was 2.44 times that of low MCRS1 expression, negatively impacting patient survival.
Collapse
Affiliation(s)
- Liang-Han Wang
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
| | - Chih-Chun Chang
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
| | - Chiao-Yin Cheng
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Dee Pei
- Division of Endocrinology and Metabolism, Department of Internal Medicine Fu Jen Catholic University Hospital, School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242, Taiwan;
| | - Jen-Tang Sun
- Department of Emergency Medicine, Far Eastern Memorial Hospital, New Taipei 220, Taiwan; (L.-H.W.); (C.-Y.C.)
- Correspondence: (J.-T.S.); (Y.-L.C.); Tel.: +886-2-7728-1843 (J.-T.S.); +886-2-8792-3311 (ext. 16756) (Y.-L.C.)
| | - Yen-Lin Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-T.S.); (Y.-L.C.); Tel.: +886-2-7728-1843 (J.-T.S.); +886-2-8792-3311 (ext. 16756) (Y.-L.C.)
| |
Collapse
|
15
|
Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother 2022; 150:113015. [PMID: 35468585 DOI: 10.1016/j.biopha.2022.113015] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Radix astragali polysaccharide (RAP) is a water-soluble heteropolysaccharide. It is an immune promoter and regulator, and has antivirus, antitumor, anti-aging, anti-radiation, anti-stress, anti-oxidation and other activitys. The extraction, separation, purification, structure, activity and modification of RAP were summarized. Some extraction methods of RAP had been introduced, and the separation and purification methods of RAP were reviewed, and the structure and activity of RAP were highly discussed. Current derivatization of RAP was outlined. Through the above discussion that the yield of crude polysaccharides from Radix astragali by enzyme-assisted extraction was significantly higher than that by other extraction methods, but each extraction method had different extraction effects under certain conditions, and the activity efficiency of RAP was also different. Therefore, it is particularly important to optimize the extraction method with known better yield for the study of RAP. In addition, the purification and separation of RAP are the key factors affecting the yield and activity of RAP. At the same time, there are still few studies on the derivatiration of Radix astragali polysaccharide, but the researches in this area are very important. RAP also has many important pharmacological effects on human body, but its practical application needs further study. Finally, studies on the structure-activity relationship of RAP still need to be carried out by many scholars. This review would provide some help for further researches on various important applications of RAP.
Collapse
Affiliation(s)
- Zhenjie Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
16
|
Tao X, Zhang X, Feng F. <i>Astragalus </i>polysaccharide suppresses cell proliferation and invasion by up-regulation of miR-195-5p in non-small cell lung cancer. Biol Pharm Bull 2022; 45:553-560. [DOI: 10.1248/bpb.b21-00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xingkui Tao
- School of Biological and Food Engineering, Suzhou University
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University
| | - Fan Feng
- School of Biological and Food Engineering, Suzhou University
| |
Collapse
|
17
|
Gong Q, Yu H, Ding G, Ma J, Wang Y, Cheng X. Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. Eur J Pharmacol 2021; 916:174726. [PMID: 34954232 DOI: 10.1016/j.ejphar.2021.174726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Chemotherapy is commonly used in the clinical treatment of melanoma, but it is prone to resistance leading to the poor effectiveness. The mechanisms of resistance are complicated including the cancer stemness. Astragalus polysaccharide (APS) is one of the active components of traditional Chinese herbal medicine Astragalus Membranaceus. Our previous work was reported that APS had an inhibitory effect on the stemness of melanoma. In this study we established chemo-resistant melanoma cells and found that expression of stemness genes were upregulated in the resistant melanoma cells. And APS could downregulate expression of stemness genes. Furthermore, APS combined with cisplatin (DDP) could significantly slow down the tumor growth in the mouse model induced by DDP-resistant cells. In addition, we found that programmed death-ligand 1 (PD-L1) expression could be downregulated and the PI3K/AKT signaling could be affected by APS. These results suggested that APS could be a potential candidate in combination with chemotherapeutic agents, which might play a role in reducing the occurrence of resistance and improving the prognosis of melanoma patients.
Collapse
Affiliation(s)
- Qianyi Gong
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
18
|
Balakrishnan B, Liang Q, Fenix K, Tamang B, Hauben E, Ma L, Zhang W. Combining the Anticancer and Immunomodulatory Effects of Astragalus and Shiitake as an Integrated Therapeutic Approach. Nutrients 2021; 13:nu13082564. [PMID: 34444724 PMCID: PMC8401741 DOI: 10.3390/nu13082564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Astragalus root (Huang Qi) and Shiitake mushrooms (Lentinus edodes) are both considered medicinal foods and are frequently used in traditional Chinese medicine due to their anticancer and immunomodulating properties. Here, the scientific literatures describing evidence for the anticancer and immunogenic properties of Shiitake and Astragalus were reviewed. Based on our experimental data, the potential to develop medicinal food with combined bioactivities was assessed using Shiitake mushrooms grown over Astragalus beds in a proprietary manufacturing process, as a novel cancer prevention approach. Notably, our data suggest that this new manufacturing process can result in transfer and increased bioavailability of Astragalus polysaccharides with therapeutic potential into edible Shiitake. Further research efforts are required to validate the therapeutic potential of this new Hengshan Astragalus Shiitake medicinal food.
Collapse
Affiliation(s)
- Biju Balakrishnan
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
| | - Qi Liang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Shanxi University of Traditional Chinese Medicine, Taiyuan 030600, China
| | - Kevin Fenix
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Bunu Tamang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
| | - Ehud Hauben
- The Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia;
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
- AusHealth Corporate Pty Ltd., Adelaide, SA 5032, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine & Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; (B.B.); (Q.L.); (B.T.)
- Correspondence: (E.H.); (L.M.); (W.Z.); Tel.: +61-88132-7450 (E.H.); +61-7-3735-4175 (L.M.); +61-8-7221-8557 (W.Z.)
| |
Collapse
|
19
|
Durazzo A, Nazhand A, Lucarini M, Silva AM, Souto SB, Guerra F, Severino P, Zaccardelli M, Souto EB, Santini A. Astragalus (Astragalus membranaceus Bunge): botanical, geographical, and historical aspects to pharmaceutical components and beneficial role. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-01003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractMedicinal plants always are part of folk medicine and are nowadays receiving worldwide attention for prophylaxis, management, and treatment of several diseases, as an alternative to chemical drugs. The current work provided a comprehensive overview and analysis of the Astragalus and health relationship in literature. The analysis of their therapeutic potential is thus instrumental to understand their bioactivity. Among these, the flowering medicinal plant Astragalus membranaceus has raised interest due to several beneficial health effects. This perspective review discussed the botanical, geographical, historical, and the therapeutic properties of A. membranaceus, with a special focus on its health improving effects and medicinal applications both in vitro and in vivo.
Graphic abstract
Collapse
|
20
|
Li W, Hu X, Li Y, Song K. Cytotoxicity and growth-inhibiting activity of Astragalus polysaccharides against breast cancer via the regulation of EGFR and ANXA1. J Nat Med 2021; 75:854-870. [PMID: 34043154 DOI: 10.1007/s11418-021-01525-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Astragalus polysaccharide (APS) has been frequently used as an adjuvant agent responsible for its immunoregulatory activity to enhance efficacy and reduce toxicity of chemotherapy used in the management of breast cancer. However, the other synergism mechanism of APS remains unclear. This study was performed to evaluate the potential targets and possible mechanism behind APS in vivo direct anti-tumor activity on breast cancer. Multiple biological detections were conducted to investigate the protein and mRNA expression levels of key targets. In total, 116 down-regulated and 73 up-regulated differential expressed genes (DEGs) were examined from 7 gene expression datasets. Top ten hub genes were obtained in four typical protein-protein interaction (PPI) network of DEGs involved in each specific biological process (BP, cell cycle, cell proliferation, cell apoptosis and death) that was related to inhibitory activity of APS in vitro against breast cancer cell lines. Four common DEGs (EGFR, ANXA1, KIF14 and IGF1) were further identified in the above four BP-PPI networks, among which EGFR and ANXA1 were the hub genes that were potentially linked to the progression of breast cancer. The results of biological detections indicated that the expression of EGFR in breast cancer cells was down-regulated, while the expression of ANXA1 was markedly increased in response to APS. In conclusion, the present study may provide potential molecular therapeutic targets and a new insight into the mechanism of APS against breast cancer.
Collapse
Affiliation(s)
- Wenfang Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yanjie Li
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|