1
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
2
|
Park SG, Jo IJ, Park SA, Park MC, Mun YJ. Poria cocos Extract from Mushrooms Stimulates Aquaporin-3 via the PI3K/Akt/mTOR Signaling Pathway. Clin Cosmet Investig Dermatol 2022; 15:1919-1931. [PMID: 36133400 PMCID: PMC9484496 DOI: 10.2147/ccid.s378545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
Abstract
Background Poria cocos (PC), a fungus, has been used for more than 2000 years as a food and medicine in China. PC and its components have various pharmacological effects on the skin, including immunomodulatory activities, barrier function improvement, and anti-tumor effects. However, the effect of PC in aquaporin-3 (AQP3) expression, which is essential for epidermal water permeability barrier maintenance, was not reported. Methods This study examined the mechanism through which the ethanol extract of the sclerotium of PC (EPC) promoted the expression of AQP3 in cultured human keratinocytes. Western blotting was used to investigate the expression of AQPs and the activation of phosphoinositide 3-kinase (PI3K)/Akt-related signaling molecules in HaCaT cells. Cells were treated with inhibitors of PI3K/Akt and mechanistic target of rapamycin (mTOR) prior to EPC treatment. Results EPC promoted the expression of AQP3 in HaCaT cells without affecting AQP1 and AQP2 expression. Phosphorylated Akt levels were increased by EPC treatment, and the inhibition of PI3K by LY2940002 resulted in a reduction in EPC-induced AQP3 expression. Furthermore, EPC stimulated the phosphorylation of p70S6K and AktSer473, which are downstream targets of mTORC1 and mTORC2, respectively. The mTOR complex inhibitors, rapamycin and Torin 1, partially reduced EPC-induced AQP3 expression. Conclusion These results suggest that EPC increased expression of AQP3, which is important for skin moisturization, by activating the PI3K/Akt/mTOR signaling pathway in human keratinocytes.
Collapse
Affiliation(s)
- Sung-Gu Park
- Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Il-Joo Jo
- Central Stroke Center of Korean medicine, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Seol-A Park
- Department of Beauty Design Graduate School, Wonkwang University, Iksan, South Korea
| | - Min-Cheol Park
- Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Yeun-Ja Mun
- Department of Anatomy, College of Korean Medicine, Wonkwang University, Iksan, South Korea
| |
Collapse
|
3
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
4
|
Tian Y, Lei Y, Fu Y, Sun H, Wang J, Xia F. Molecular Mechanisms of Resistance to Tyrosine Kinase Inhibitors Associated with Hepatocellular Carcinoma. Curr Cancer Drug Targets 2022; 22:454-462. [PMID: 35362393 DOI: 10.2174/1568009622666220330151725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, which can be attributed to the high incidence and first diagnosis at an advanced stage. Tyrosine kinase inhibitors (TKIs), a class of small-molecule targeting drugs, are primarily used for the clinical treatment of HCC after chemotherapy because they show significant clinical efficacy and low incidence of clinical adverse reactions. However, resistance to sorafenib and other TKIs, which can be used to treat advanced HCC, poses a significant challenge. Recent mechanistic studies have shown that epithelial-mesenchymal transition or transformation (EMT), ATP binding cassette (ABC) transporters, hypoxia, autophagy, and angiogenesis are involved in apoptosis, angiogenesis, HCC cell proliferation, and TKI resistance in patients with HCC. Exploring and overcoming such resistance mechanisms is essential to extend the therapeutic benefits of TKIs to patients with TKI-resistant HCC. This review aims to summarize the potential resistance mechanism proposed in recent years and methods to reverse TKI resistance in the context of HCC.
Collapse
Affiliation(s)
- Yichen Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yongrong Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| | - Yuna Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Feng Xia
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, the First Hospital Affiliated to AMU (Southwest Hospital), Chongqing, 400038, China
| |
Collapse
|
5
|
Zeng Z, Lu Q, Liu Y, Zhao J, Zhang Q, Hu L, Shi Z, Tu Y, Xiao Z, Xu Q, Huang D. Effect of the Hypoxia Inducible Factor on Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:641522. [PMID: 34307125 PMCID: PMC8292964 DOI: 10.3389/fonc.2021.641522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Sorafenib a multi-target tyrosine kinase inhibitor, is the first-line drug for treating advanced hepatocellular carcinoma (HCC). Mechanistically, it suppresses tumor angiogenesis, cell proliferation and promotes apoptosis. Although sorafenib effectively prolongs median survival rates of patients with advanced HCC, its efficacy is limited by drug resistance in some patients. In HCC, this resistance is attributed to multiple complex mechanisms. Previous clinical data has shown that HIFs expression is a predictor of poor prognosis, with further evidence demonstrating that a combination of sorafenib and HIFs-targeted therapy or HIFs inhibitors can overcome HCC sorafenib resistance. Here, we describe the molecular mechanism underlying sorafenib resistance in HCC patients, and highlight the impact of hypoxia microenvironment on sorafenib resistance.
Collapse
Affiliation(s)
- Zhi Zeng
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yang Liu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Junjun Zhao
- Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Qian Zhang
- The Medical College of Qingdao University, Qingdao, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China.,Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Zhan Shi
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifeng Tu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zunqiang Xiao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
6
|
Zhou S, Ma Y, Liu X, Yu P, Huang N, Song L, Xu R, Huo Z, Zhu T, Tang X. Targeted Delivery of Glypican 3 (GPC3) Antibody-Modified MicroRNA (miR let-7b-5p) Polymer Nanoparticles to Sorafenib-Resistant Hepatsocellular Carcinoma Cells. J Biomed Nanotechnol 2021; 17:677-690. [PMID: 35057893 DOI: 10.1166/jbn.2021.3033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The miR let-7b-5p (a kind of microRNAs) has many pathophysiological regulation effects, including human hepatocellular carcinoma (HCC) pathogenesis. This study investigated whether nanoparticle-mediated miR let-7b-5p could jointly enhance the therapeutic effect of sorafenib on HCC by
inhibiting the proliferation of HCC cells, inducing apoptosis, and reversing drug resistance. We evaluated the level of miR let-7b-5p in sorafenib-resistant HepG2 cells (HepG2R) and HepG2 HCC cells by qRT-PCR and analyzed the biological effects of hepatocellular carcinoma treated
with sorafenib with miR let-7b-5p, and further studied the toxicity of nanoparticles (Ab-miR-NPs) that deliver miR let-7b-5p mimics and target GPC3 on the surface of hepatocellular carcinoma cells. Results showed that, in HepG2 cells, the expression level of miR let-7b-5p was significantly
higher than that in HepG2R cells. Targeted nanoparticle Ab-miR-NPs mediated the delivery of miR let-7b-5p to the HCC cytoplasm and released miRNA after being broken down, down-regulating the expression of IGF1R and inhibiting AKT/mTOR and Ras/Raf signal transmission. Ab-miR-NPs
not only enhanced the proliferation of sorafenib in cultured HepG2R cells and induced cell apoptosis efficiency, but they also improved the anti-tumor activity in the mouse models. These results indicated that GPC3 antibody-modified PLGA-PLL (polylactic acid-glycolic acetic copolymer
grafted hyper-branched polylysine) loaded miR let-7b-5p polymer nanoparticles combined with sorafenib may be a new treatment strategy for HCC resistant to sorafenib.
Collapse
Affiliation(s)
- Shuping Zhou
- Clinical Laboratory Medicine, First Affiliated Hospital, Anhui University ofScience & Technology, Huainan 232001, China
| | - Yongfang Ma
- Clinical Laboratory Medicine, First Affiliated Hospital, Anhui University ofScience & Technology, Huainan 232001, China
| | - Xueke Liu
- Department of Clinical Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China 5Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - Pan Yu
- Medical School, Anhui University of Science & Technology, Huainan 232001, China
| | - Ning Huang
- Institute of Environmentally-Friendly Materials and Occupational Health, Anhui University of Science and Technology (Wuhu), Wuhu 241003, China
| | - Li Song
- Clinical Laboratory Medicine, First Affiliated Hospital, Anhui University ofScience & Technology, Huainan 232001, China
| | - Ruyue Xu
- Clinical Laboratory Medicine, First Affiliated Hospital, Anhui University ofScience & Technology, Huainan 232001, China
| | - Zhen Huo
- Medical School, Anhui University of Science & Technology, Huainan 232001, China
| | - Tao Zhu
- Medical School, Anhui University of Science & Technology, Huainan 232001, China
| | - Xiaolong Tang
- Clinical Laboratory Medicine, First Affiliated Hospital, Anhui University ofScience & Technology, Huainan 232001, China
| |
Collapse
|
7
|
Han M, Li S, Xie H, Liu Q, Wang A, Hu S, Zhao X, Kong Y, Wang W, Li C. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021; 320:F308-F321. [PMID: 33427060 DOI: 10.1152/ajprenal.00577.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is associated with markedly reduced protein expression of aquaporins (AQPs). Membrane G protein-coupled bile acid receptor-1 (TGR5) has shown protective roles in some kidney diseases. The purpose of the current study was to investigate whether activation of TGR5 prevented the decreased protein expression of AQPs in rodents with renal I/R injury and potential mechanisms. TGR5 agonist lithocholic acid (LCA) treatment reduced polyuria after renal I/R injury in rats. LCA prevented the decreased abundance of AQP2 protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression, which were associated with decreased protein abundance of NF-κB p65 and IL-1β. After renal I/R, mice with tgr5 gene deficiency exhibited further decreases in AQP2 and HIF-1α protein abundance and increases of IL-1β and NF-κB p65 protein expression compared with wild-type mice. In primary cultured inner medullary collecting duct cells with hypoxia/reoxygenation, LCA induced markedly increased protein expression of AQP2 and HIF-1α, which were partially prevented by the PKA inhibitor H89. FG4592, a prolyl-4-hydroxylase domain-containing protein inhibitor, increased HIF-1α and AQP2 protein abundance in association with decreased NF-κB p65 protein expression in inner medullary collecting duct cells with hypoxia/reoxygenation. In conclusion, TGR5 stimulation by LCA prevented downregulation of renal AQPs in kidney with I/R injury, likely through activating HIF-1α signaling and suppressing inflammatory responses.NEW & NOTEWORTHY Stimulation of the membrane G protein-coupled bile acid receptor TGR5 by lithocholic acid (LCA) reduced polyuria in rats with renal ischemia-reperfusion (I/R) injury. LCA increased abundance of aquaporin-2 (AQP2) protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression in association with decreased NF-κB p65 and IL-1β. After I/R, mice with tgr5 gene deficiency exhibited more severe decreases in AQP2 and HIF-1α protein abundance and inflammatory responses. TGR5 activation exhibits a protective role in acute renal injury induced by I/R.
Collapse
Affiliation(s)
- Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ani Wang
- Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|