1
|
Capela AM, Tavares-Marcos C, Estima-Arede HF, Nóbrega-Pereira S, Bernardes de Jesus B. NORAD-Regulated Signaling Pathways in Breast Cancer Progression. Cancers (Basel) 2024; 16:636. [PMID: 38339387 PMCID: PMC10854850 DOI: 10.3390/cancers16030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Long non-coding RNA activated by DNA damage (NORAD) has recently been associated with pathologic mechanisms underlying cancer progression. Due to NORAD's extended range of interacting partners, there has been contradictory data on its oncogenic or tumor suppressor roles in BC. This review will summarize the function of NORAD in different BC subtypes and how NORAD impacts crucial signaling pathways in this pathology. Through the preferential binding to pumilio (PUM) proteins PUM1 and PUM2, NORAD has been shown to be involved in the control of cell cycle, angiogenesis, mitosis, DNA replication and transcription and protein translation. More recently, NORAD has been associated with PUM-independent roles, accomplished by interacting with other ncRNAs, mRNAs and proteins. The intricate network of NORAD-mediated signaling pathways may provide insights into the potential design of novel unexplored strategies to overcome chemotherapy resistance in BC treatment.
Collapse
Affiliation(s)
| | | | | | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.C.); (C.T.-M.); (H.F.E.-A.)
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.C.); (C.T.-M.); (H.F.E.-A.)
| |
Collapse
|
2
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
3
|
Chen J, Zhou Y, Wu M, Yuan Y, Wu W. m6A Modification Mediates Exosomal LINC00657 to Trigger Breast Cancer Progression Via Inducing Macrophage M2 Polarization. Clin Breast Cancer 2023:S1526-8209(23)00092-7. [PMID: 37198028 DOI: 10.1016/j.clbc.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exosome-mediated transfer of long noncoding RNAs (lncRNAs) is critical for the cell-cell crosstalk in the tumor microenvironment. Nevertheless, the role of breast cancer (BC) cell-derived exosomal lncRNA in macrophage polarization during the development of BC remains unclear. METHODS The key lncRNAs carried by BC cell-derived exosomes were identified by RNA-seq. CCK-8, flow cytometry, and transwell assay were conducted to analyze the role of LINC00657 in BC cells. In addition, immunofluorescence, qRT-PCR, western blot, and MeRIP-PCR were used to evaluate the function and underlying mechanism of exosomal LINC00657 in macrophage polarization. RESULTS LINC00657 was distinctly upregulated in BC-derived exosomes and it was associated with increased m6A methylation modification levels. In addition, the depletion of LINC00657 significantly diminished the proliferative activity, migration and invasion potential of BC cells, and it also accelerated cell apoptosis. Exosomal LINC00657 from MDA-MB-231 cells could facilitate macrophage M2 activation, thus stimulating BC development in turn. Furthermore, LINC00657 activated the TGF-β signaling pathway by sequestering miR-92b-3p in macrophages. CONCLUSION Exosomal LINC00657 secreted by BC cells could induce macrophage M2 activation, and these macrophages preferentially contributed to the malignant phenotype of BC cells. These results improve our understanding of BC and suggest a new therapeutic strategy for patients with BC.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yuxin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Minhua Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yijie Yuan
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Weizhu Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
5
|
LINC00657 regulate colorectal carcinoma invasion and migration by enhancing heparanase expression through recruiting SMAD family member 2. Anticancer Drugs 2022; 33:803-814. [PMID: 35946507 DOI: 10.1097/cad.0000000000001323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs are master regulators of several cancer phenotypes, such as cell growth, apoptosis, and motility. This study is designed to resolve the relevance of LINC00657 with tumor invasion and migration and its action mechanism in colorectal carcinoma (CRC). LINC00657 and HPSE levels were first examined in cancerous tissues from CRC patients and CRC cells. Then functional experiments were conducted to evaluate the abilities of HCT116 and SW620 cells to proliferate, migrate, and invade when LINC00657 or HPSE was knocked down, or LINC00657 knockdown and SMAD2 overexpression were simultaneously introduced. Snail and E-cadherin levels in the CRC cells were evaluated. Next, the binding between LINC00657 and SMAD2 or between SMAD2 and HPSE was determined. LINC00657-silencing HCT116 cells were inoculated into nude mice, and the tumorigenesis and the levels of Snail and E-cadherin were evaluated. LINC00657 and HPSE were increasingly expressed in CRC. Knockdown of LINC00657 or HPSE inhibited the malignant properties of CRC cells, decreased Snail expression, and strengthened E-cadherin level. LINC00657 and HPSE could both bind to SMAD2. SMAD2 overexpression counteracted the inhibiting effect of LINC00657 silencing on HPSE expression and the growth and invasion of CRC cells. In vivo experiments further verified the suppression of LINC00657 knockdown on tumor growth and metastasis. LINC00657 recruits SMAD2 to HPSE promoter region to elevate HPSE transcription, thus accelerating CRC invasion and migration.
Collapse
|
6
|
METTL3-mediated LINC00657 promotes osteogenic differentiation of mesenchymal stem cells via miR-144-3p/BMPR1B axis. Cell Tissue Res 2022; 388:301-312. [PMID: 35192037 DOI: 10.1007/s00441-022-03588-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in the progression of osteoporosis (OP). The study aimed to explore the effects of methyltransferase-like 3 (METTL3) in OP. The levels of METTL3, LINC00657, miR-144-3p and BMPR1B were detected using qPCR. Osteogenesis was assessed using alizarin red and alkaline phosphatase (ALP) staining assays. The protein expression of Bglap, Runx2 and Col1a1 was measured by western blot. The targets of LINC00657 and miR-144-3p were screened by bioinformatic analysis. The interaction between miR-144-3p and LINC00657 or BMPR1B was analyzed by dual-luciferase reporter assay and RNA pull-down assay. The results showed that METTL3 was downregulated in OP. METTL3 mediated m6A methylation of LINC00657 to promote the development of osteogenesis. Further study indicated that LINC00657 functioned as a ceRNA to upregulate BMPR1B via sponging miR-144-3p. Additionally, BMPR1B knockdown alleviated the effects of METTL3 on osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Taken together, METTL3 facilitated osteogenic differentiation of BMSCs via the LINC00657/miR-144-3p/BMPR1B axis. Our findings may provide a novel insight of m6A methylation in the development of OP.
Collapse
|
7
|
Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S, Song Y. MicroRNA (miR)-590-3p alleviates high-glucose induced renal tubular epithelial cell damage by targeting C-X3-C motif chemokine ligand 1 (CX3CL1) in diabetic nephropathy. Bioengineered 2021; 13:634-644. [PMID: 34898373 PMCID: PMC8805927 DOI: 10.1080/21655979.2021.2012548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We attempted to analyze the clinical value of microRNA (miR)-590-3p in diabetic nephropathy (DN) patients and its role in high glucose (HG)-induced renal tubular epithelial cell (HK-2) injury. Serum levels of miR-590-3p were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Spearman correlation coefficient analysis of the correlation between miR-590-3p and clinical indicators. The diagnostic value of miR-590-3p was analyzed by the receiver operating characteristic (ROC) curve. Then, the DN cell model induced by HG in HK-2 cells was established. Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and CCK-8 assay were employed to assess cell inflammation, oxidative stress, apoptosis, and proliferation. Dual-luciferase reporter assay confirmed the target of miR-590-3p. Serum miR-590-3p was reduced in patients of DN, which was positively correlated with eGFR and negatively associated with albuminuria. Furthermore, miR-590-3p also can diagnose patients of DN from healthy subjects or patients of T2DM. Furthermore, miR-590-3p was decreased in a concentration- and time-dependent manner during HG-induction. miR-590-3p overexpression bated HG-induced inhibition effect on cell proliferation and promotion effects on apoptosis, oxidative stress, and inflammation. C-X3-C motif chemokine ligand1 (CX3CL1) is the target of miR-590-3p, whose levels were enhanced in DN patients and are negatively regulated by miR-590-3p. Our discoveries offered new insights that reduced miR-590-3p as a potential biomarker for the diagnosis of DN, and elevated miR-590-3p can alleviate renal tubular injury by HG-induced through targeting CX3XL1, which may be a novel target for improving the development of DN.
Collapse
Affiliation(s)
- Jie Yun
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Jinyu Ren
- Department of Encephalopathy, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yufei Liu
- Department of Blood Purification, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Lijuan Dai
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Liqun Song
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Xiaopeng Ma
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Shan Luo
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
8
|
Zhang T, Wang Y, Chen Y, Jin S, Gao Y, Zhang D, Wu Y. Evaluation of the Oncogene Function of GOLPH3 and Correlated Regulatory Network in Lung Adenocarcinoma. Front Oncol 2021; 11:669684. [PMID: 34497755 PMCID: PMC8419434 DOI: 10.3389/fonc.2021.669684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background Golgi phosphoprotein 3 (GOLPH3) is an oncoprotein localized in the Golgi apparatus. Abnormal GOLPH3 expression is potentially related to carcinogenesis. However, the potential biological regulation network of GOLPH3 in lung adenocarcinoma (LUAD) remains to be determined. Methods Expression of GOLPH3 was identified in LUAD via TIMER, Oncomine, Lung Cancer Explorer (LCE), Human Protein Atlas (HPA), and UALCAN database. Survival analysis was performed using the Kaplan–Meier plotter. GOLPH3 alterations were analyzed through cBioPortal. LinkedOmics was used to perform functional analysis and predict interacted targets. The protein–protein interaction network was constructed by GeneMANIA. In addition, candidate miRNAs and lncRNAs targeting GOLPH3 were generated to construct competing endogenous RNA (ceRNA) network, and survival analysis of ceRNA was performed using LnCeVar. The mRNA or protein expression of TUG1, miR-142-5p, and GOLPH3 in Beas-2B and LUAD cells was verified using qPCR or Western blotting. CCK-8 assay, wound healing assay, and transwell assay were used to detect the ability of cell proliferation, migration, and invasion. Results Overexpression of GOLPH3 was identified in LUAD. UALCAN analysis showed that upregulated GOLPH3 was linked to different pathological features of LUAD patients. Importantly, high GOLPH3 expression indicated a negative correlation with the first progression (FP) in LUAD patients. GOLPH3 alterations were also found. Moreover, co-expressed genes with GOLPH3 were analyzed; and they were involved in ribosome and oxidative phosphorylation pathways. Functional network analysis indicated GOLPH3 regulated T-cell receptor signaling pathway and interferon signaling pathway with kinase and transcription factor targets. Notably, TUG1/miR-142-5p/GOLPH3 affected overall survival of LUAD patients. GOLPH3 expression was decreased in the cells with overexpression of miR-142-5p and TUG1 knockdown. GOLPH3 reduction inhibited cell proliferation, migration, and invasion. Conclusions Upregulation of GOLPH3 has a positive correlation with clinicopathological subtypes and poor FP in LUAD. GOLPH3 promoted LUAD progression. Moreover, TUG1 may act as ceRNA to regulate GOLPH3 expression by competitive binding miR-142-5p.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yangyang Chen
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shuo Jin
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Gao
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Dan Zhang
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Yonghui Wu
- Department of Occupational Health, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Li X, Guo C, Chen Y, Yu F. Long non-coding RNA SNHG16 regulates E2F1 expression by sponging miR-20a-5p and aggravating proliferative diabetic retinopathy. Can J Physiol Pharmacol 2021; 99:1207-1216. [PMID: 34197720 DOI: 10.1139/cjpp-2020-0693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (lncRNAs) were reported that related to microvascular dysfunction in diabetic retinopathy (DR), but the potential mechanism remains unknown. This study was designed to elucidate the effects of lncRNA SNHG16 in proliferative DR progression. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to measure the levels of SNHG16 and miR-20a-5p from peripheral blood samples of different participants. Pearson's correlation analysis on the plasma data was applied to detect correlations between SNHG16 and miR-20a-5p. Finally, the interactions of miR-20a-5p and SNHG16 or E2F1 were assessed by luciferase reporter assays. SNHG16 and E2F1 were increased and miR-20a-5p was decreased in proliferative DR both in vivo and in vitro, when compared with control or non-proliferative DR. E2F1 was identified as the target of miR-20a-5p. MiR-20a-5p interacted with SNHG16 and E2F1, and was controlled by SNHG16. The regulation of SNHG16 on E2F1 was mediated by miR-20a-5p. Cells transfected with SNHG16 OE plasmid markedly increased cell apoptosis and vessel-like formation, whereas the miR-20a-5p mimic partially reversed these effects. Transfection with si-E2F1 plasmid rescued SNHG16 overexpression-aggravated proliferative DR. This study indicated that SNHG16 regulated E2F1 expression by sponging miR-20a-5p and aggravating proliferative DR.
Collapse
Affiliation(s)
| | | | - Yong Chen
- Zhuji Central Hospital, Zhuji, China;
| | - Feifei Yu
- Zhuji Affiliated Hospital of Wenzhou Medical University, 74784, 9, Jianmin Road, Taozhu Street, Zhuji City, Zhuji, China, 311800;
| |
Collapse
|
10
|
Tan J, Pan W, Chen H, Du Y, Jiang P, Zeng D, Wu J, Peng K. Circ_0124644 Serves as a ceRNA for miR-590-3p to Promote Hypoxia-Induced Cardiomyocytes Injury via Regulating SOX4. Front Genet 2021; 12:667724. [PMID: 34249089 PMCID: PMC8267871 DOI: 10.3389/fgene.2021.667724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNA (circRNA) is an important factor for regulating the progression of many cardiovascular diseases, including acute myocardial infarction (AMI). However, the role of circ_0124644 in AMI progression remains unclear. Hypoxia was used to induce cardiomyocytes injury. The expression of circ_0124644, microRNA (miR)-590-3p, and SRY-box transcription factor 4 (SOX4) mRNA was measured by qRT-PCR. Cell counting kit 8 (CCK8) assay and flow cytometry were utilized to detect cell viability, cell cycle progression, and apoptosis. The protein levels of apoptosis markers and SOX4 were determined by western blot (WB) analysis, and the levels of oxidative stress markers were assessed using commercial Assay Kits. Dual-luciferase reporter assay, RIP assay, and RNA pull-down assay were employed to confirm the interaction between miR-590-3p and circ_0124644 or SOX4. Circ_0124644 was upregulated in AMI patients and hypoxia-induced cardiomyocytes. Hypoxia could inhibit cardiomyocytes viability, cell cycle process, and promote apoptosis and oxidative stress, while silencing circ_0124644 could alleviate hypoxia-induced cardiomyocytes injury. In terms of mechanism, circ_0124644 could target miR-590-3p. MiR-590-3p overexpression could relieve hypoxia-induced cardiomyocytes injury. Also, the suppressive effect of circ_0124644 knockdown on hypoxia-induced cardiomyocytes injury could be reversed by miR-590-3p inhibitor. Moreover, SOX4 was found to be a target of miR-590-3p, and its overexpression also could reverse the regulation of miR-590-3p on hypoxia-induced cardiomyocytes injury. Circ_0124644 silencing could alleviate hypoxia-induced cardiomyocytes injury by regulating the miR-590-3p/SOX4 axis, suggesting that it might be a target for alleviating AMI.
Collapse
Affiliation(s)
- Juan Tan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Weinan Pan
- College of Pharmacy, Hunan Food and Drug Vocational College, Changsha, China
| | - Huilin Chen
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yafang Du
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Peiyong Jiang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dianmei Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jie Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kuang Peng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|