1
|
Na C, Ao D, Chen H. MiR-331-3p facilitates osteoporosis and may promote osteoporotic fractures by modulating NRP2 expression. J Orthop Surg Res 2024; 19:487. [PMID: 39154011 PMCID: PMC11330005 DOI: 10.1186/s13018-024-04959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a high-incidence bone disease that is prone to osteoporotic fractures (OF), so it has attracted widespread attention. AIM This study investigated the specific expression and role of miR-331 in patients with OP and OF. The findings have profound implications for the clinical prevention and treatment of these conditions. METHODS The study included 60 OP patients, 46 OF patients, and 40 healthy controls. The expression level of miR-331-3p was detected using RT-qPCR. BMP2 was used to stimulate differentiation in MC3T3-E1 cells. After induction, the expression activity of osteogenic differentiation-related gene markers was detected using RT-qPCR. The target gene analysis was conducted using a luciferase reporter assay. RESULTS The levels of miR-331-3p were significantly elevated, while NRP2 levels were significantly reduced in OF patients. Post-surgery, miR-331-3p levels decreased over time. MiR-331-3p was found to negatively regulate the luciferase activity of NPR2 in MC3T3-E1 cells. Furthermore, overexpression of miR-331-3p inhibited cell proliferation and decreased the levels of osteoblast differentiation markers. CONCLUSION The up-regulation of miR-331-3p can promote OP and might also encourage the occurrence of OF by regulating NRP2. However, this needs further verification.
Collapse
Affiliation(s)
- Cikedaoerji Na
- Sports Medicine Department of The Sixth Affiliated Hospital of Xinjiang Medical University, No.39, Wuxing South Road, Urumqi City, 830000, China
| | - Denggaowa Ao
- Oncology Department of The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Hongtao Chen
- Sports Medicine Department of The Sixth Affiliated Hospital of Xinjiang Medical University, No.39, Wuxing South Road, Urumqi City, 830000, China.
| |
Collapse
|
2
|
Cheng JC, Swarup N, Morselli M, Huang WL, Aziz M, Caggiano C, Kordi M, Patel A, Chia D, Kim Y, Li F, Wei F, Zaitlen N, Krysan K, Dubinett S, Pellegrini M, Wong DW. Single-stranded pre-methylated 5mC adapters uncover the methylation profile of plasma ultrashort Single-stranded cell-free DNA. Nucleic Acids Res 2024; 52:e50. [PMID: 38797520 PMCID: PMC11194076 DOI: 10.1093/nar/gkae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Whole-genome bisulfite sequencing (BS-Seq) measures cytosine methylation changes at single-base resolution and can be used to profile cell-free DNA (cfDNA). In plasma, ultrashort single-stranded cfDNA (uscfDNA, ∼50 nt) has been identified together with 167 bp double-stranded mononucleosomal cell-free DNA (mncfDNA). However, the methylation profile of uscfDNA has not been described. Conventional BS-Seq workflows may not be helpful because bisulfite conversion degrades larger DNA into smaller fragments, leading to erroneous categorization as uscfDNA. We describe the '5mCAdpBS-Seq' workflow in which pre-methylated 5mC (5-methylcytosine) single-stranded adapters are ligated to heat-denatured cfDNA before bisulfite conversion. This method retains only DNA fragments that are unaltered by bisulfite treatment, resulting in less biased uscfDNA methylation analysis. Using 5mCAdpBS-Seq, uscfDNA had lower levels of DNA methylation (∼15%) compared to mncfDNA and was enriched in promoters and CpG islands. Hypomethylated uscfDNA fragments were enriched in upstream transcription start sites (TSSs), and the intensity of enrichment was correlated with expressed genes of hemopoietic cells. Using tissue-of-origin deconvolution, we inferred that uscfDNA is derived primarily from eosinophils, neutrophils, and monocytes. As proof-of-principle, we show that characteristics of the methylation profile of uscfDNA can distinguish non-small cell lung carcinoma from non-cancer samples. The 5mCAdpBS-Seq workflow is recommended for any cfDNA methylation-based investigations.
Collapse
Affiliation(s)
- Jordan C Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mohammad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christa Caggiano
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Misagh Kordi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abhijit A Patel
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - David Chia
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Zaitlen
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steve Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:231-243. [PMID: 38650448 PMCID: PMC11057993 DOI: 10.3724/zdxbyxb-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
MiRNAs are a class of small non-coding RNAs, which regulate gene expression post-transcriptionally by partial complementary base pairing. Aberrant miRNA expressions have been reported in tumor tissues and peripheral blood of cancer patients. In recent years, artificial intelligence algorithms such as machine learning and deep learning have been widely used in bioinformatic research. Compared to traditional bioinformatic tools, miRNA target prediction tools based on artificial intelligence algorithms have higher accuracy, and can successfully predict subcellular localization and redistribution of miRNAs to deepen our understanding. Additionally, the construction of clinical models based on artificial intelligence algorithms could significantly improve the mining efficiency of miRNA used as biomarkers. In this article, we summarize recent development of bioinformatic miRNA tools based on artificial intelligence algorithms, focusing on the potential of machine learning and deep learning in cancer-related miRNA research.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
4
|
Zhang L, Gao Y. ICOSLG acts as an oncogene to promote glycolysis, proliferation, migration, and invasion in gastric cancer cells. Arch Biochem Biophys 2024; 752:109841. [PMID: 38081339 DOI: 10.1016/j.abb.2023.109841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) has emerged as one of the most common malignancies in gastrointestinal system. Inducible T-cell costimulator ligand (ICOSLG) was found to be highly expressed in various cancers, which contributes to disease progression. This study aims to investigate the role of ICOSLG and its potential mechanism of action in dictating the aggressiveness of GC cell. ICOSLG and miR-331-3p expression patterns in cancerous and para-cancerous tissues from GC patients were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The miRNAs targeting ICOSLG were predicted by "miRDB", "starBase," and "TargetScan" databases. The interplay of ICOSLG and miR-331-3p in dictating the aggressiveness and glycolysis of GC cells was investigated by CCK-8 proliferation assay and Transwell migration/invasion assays, as well as the detection of glucose uptake, lactate production and ATP levels. The tumorigenesis of GC cells after ICOSLG silencing was examined in the nude mice. ICOSLG was highly expressed in GC tissues, and GC patients with high ICOSLG expression showed a poorer prognosis than the low-expression group. Further, high ICOSLG level was correlated with more advanced TNM stages, more lymph-node metastases, and poorer tumor differentiation. ICOSLG knockdown inhibited the proliferation, migration, invasion and tumor formation of GC cells, which was concomitant with reduced glucose consumption, lactate production, and ATP levels. In contrast, ICOSLG overexpression enhanced the aggressiveness of GC cells, and this effect was abrogated after the treatment with glycolysis inhibitor. We further found that miR-331-3p was a negative regulator of ICOSLG4, and miR-331-3p overexpression reduced ICOSLG4 expression and suppressed the aggressive phenotype induced by ICOSLG4 in GC cells. Together, these findings indicate that ICOSLG4, as an oncogene, is upregulated to promote glycolysis and the malignant phenotype in GC cells. miR-331-3p, which is downregulated in GC tissues, functions as a negative regulator of ICOSLG4. Targeting miR-331-3p/ICOSLG4 axis could potentially suppress GC progression.
Collapse
Affiliation(s)
- Li Zhang
- Department of Oncology, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, 100101, China
| | - Yunge Gao
- Department of Oncology, PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of PLA), Beijing, 100101, China.
| |
Collapse
|
5
|
Tang Y, Li X. Role and mechanism of Circ-PDE7B in the formation of keloid. Int Wound J 2023; 20:3738-3749. [PMID: 37291755 PMCID: PMC10588313 DOI: 10.1111/iwj.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The excessive proliferation of keloid fibroblasts is one of the important reasons leading to the formation of keloids. Circular RNA (circRNA) is an important regulator that regulates the biological functions of cells. However, the role and mechanism of circ-PDE7B in keloid formation have not been studied yet. QRT-PCR was used to detect the circ-PDE7B, miR-331-3p and cyclin-dependent kinase 6 (CDK6) expression. The biological functions of keloid fibroblasts were determined by MTT assay, flow cytometry, transwell assay and wound healing assay. Western blot analysis was used to measure the protein levels of extracellular matrix (ECM) markers and CDK6. The interaction between miR-331-3p and circ-PDE7B or CDK6 was confirmed by dual-luciferase reporter assay and RIP assay. Circ-PDE7B was found to be upregulated in keloid tissues and fibroblasts. Downregulation of circ-PDE7B could suppress the proliferation, invasion, migration, ECM accumulation and accelerate the apoptosis of keloid fibroblasts. Circ-PDE7B could serve as a sponge of miR-331-3p, and the regulation of silenced circ-PDE7B on the biological functions of keloid fibroblasts could be abolished by miR-331-3p inhibitor. Additionally, CDK6 was a target of miR-331-3p, and its overexpression could reverse the negative regulation of miR-331-3p on the biological functions of keloid fibroblasts. Circ-PDE7B sponged miR-331-3p to positively regulate CDK6 expression. Taken together, circ-PDE7B promoted the proliferation, invasion, migration and ECM accumulation of keloid fibroblasts by regulating the miR-331-3p/CDK6 axis, suggesting that circ-PDE7B might be a potential target for keloid treatment.
Collapse
Affiliation(s)
- Yueling Tang
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical University, Xi'an Central HospitalXi'anChina
| | - Xiaojing Li
- Department of Plastic SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
6
|
Hao D, Li Y, Shi J, Jiang J. Circ_0110498 facilitates the cisplatin resistance of non-small cell lung cancer by mediating the miR-1287-5p/RBBP4 axis. Thorac Cancer 2023; 14:662-672. [PMID: 36691322 PMCID: PMC9981309 DOI: 10.1111/1759-7714.14787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) play vital roles in non-small cell lung cancer (NSCLC) progression. Our research analyzed the role of circ_0110498 on the cisplatin (DDP) resistance of NSCLC. METHODS Cell glycolysis was analyzed by measuring glucose consumption and lactate production. Protein expression was determined by western blot analysis. The expression of circ_0110498, microRNA (miR)-1287-5p and RBBP4 was detected by RT-qPCR assay. Cell counting kit-8, colony formation and transwell assays, together with flow cytometry were conducted to analyze cell DDP resistance, proliferation, metastasis and apoptosis. RESULTS Circ_0110498 expression was elevated in DDP-resistant NSCLC tissues and cells. Circ_0110498 silencing not only suppressed the DDP resistance of NSCLC cells by inhibiting cell growth, metastasis and glycolysis, but also enhanced the DDP sensitivity of NSCLC tumors. MiR-1287-5p was sponged by circ_0110498, and its inhibitor also reversed the effect of circ_0110498 silencing on the DDP resistance of NSCLC cells. MiR-1287-5p interacted with RBBP4, and RBBP4 overexpression partly reversed the inhibitory effect of miR-1287-5p on the DDP resistance of NSCLC cells. CONCLUSION Circ_0110498 facilitated DDP resistance partly through mediating the miR-1287-5p/RBBP4 signaling in NSCLC.
Collapse
Affiliation(s)
- Dexun Hao
- Department of Geriatric Respiratory and SleepThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Yanshuang Li
- Department of AnesthesiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Jiang Shi
- Department of Geriatric Respiratory and SleepThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| | - Junguang Jiang
- Department of Geriatric Respiratory and SleepThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou CityChina
| |
Collapse
|
7
|
LncRNA HOTAIR enhances RCC2 to accelerate cervical cancer progression by sponging miR-331-3p. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1650-1660. [PMID: 36593385 DOI: 10.1007/s12094-022-03059-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) have been gradually regarded as influential indicators of various cancers. The present study aimed to identify the effects of lncRNA HOTAIR on cervical cancer progression. METHODS RNA and protein expressions were quantified by RT-qPCR and western blot assays. Fluorescence in situ hybridization (FISH) assay was carried out to examine the intracellular location of HOTAIR. Cancer cell viability and mobility were detected by CCK-8, colony formation, transwell and wound healing assays. Binding relationships between miR-331-3p and HOTAIR/RCC2 were validated by luciferase reporter assay. RESULTS RT-qPCR assays showed that HOTAIR levels were notably upregulated in cervical cancer tissues and cell lines. Furthermore, a fluorescence in situ hybridization (FISH) assay suggested that HOTAIR was mostly located in the cytoplasm of cancer cells, indicating a sponging function. CCK-8, colony formation, Transwell and wound-healing assays indicated that knockdown of HOTAIR in HeLa and SiHa cells significantly reduced cell growth, migration and invasion. Subsequently, miR-331-3p was proven to be the target molecule of HOTAIR. In addition, results from Pearson's correlation analysis indicated negative correlation between HOTAIR and miR-331-3p in cervical cancer tissues. HOTAIR negatively modulated miR-331-3p expression. Ultimately, the target gene of miR-331-3p was verified to be RCC2, and miR-331-3p negatively modulated RCC2 expression. In addition, analysis on clinical cervical cancer tissues confirmed the negative correlation between miR-331-3p and RCC2. HOTAIR and RCC2 showed oncogenic functions in HeLa and SiHa cells, while miR-331-3p exerted the reverse effect. CONCLUSIONS HOTAIR plays a carcinogenic role in cervical cancer by targeting the miR-331-3p/RCC2 axis. Moreover, clinical cervical cancer tissues confirmed the negative correlation between miR-331-3p with lncRNA HOTAIR and RCC2. These data suggested an underlying therapeutic target for cervical cancer.
Collapse
|
8
|
Li S, Zhao J, Wen S, Li M, Yu F, Wang W, Shao H, Jiang D. CircRNA High Mobility Group At-hook 2 regulates cell proliferation, metastasis and glycolytic metabolism of nonsmall cell lung cancer by targeting miR-331-3p to upregulate High Mobility Group At-hook 2. Anticancer Drugs 2023; 34:81-91. [PMID: 36066399 DOI: 10.1097/cad.0000000000001343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing circular RNAs (circRNAs) have been identified as pivotal players in nonsmall cell lung cancer (NSCLC). The study will explore the function and mechanism of circRNA High Mobility Group AT-hook 2 (circHMGA2) in NSCLC. The circHMGA2, microRNA-331-3p (miR-331-3p) and HMGA2 expression analyses were performed via quantitative real-time PCR. Cell proliferation was assessed via Cell Counting Kit-8 and colony formation assays. Transwell migration/invasion assays were used for measuring cell metastasis. Glucose consumption and lactate production were determined for glycolytic evaluation. Western blot was used to detect the protein expression of HMGA2 and glycolytic markers. Target analysis was performed by dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assays. Xenograft tumor assay in mice was conducted for the investigation of circHMGA2 in vivo . CircHMGA2 was overexpressed in NSCLC, and high circHMGA2 level might be related to NSCLC metastasis and poor prognosis. In-vitro assays suggested that NSCLC cell growth, metastasis and glycolysis were retarded by downregulation of circHMGA2. Upregulation of HMGA2 was shown to return the anticancer response of circHMGA2 knockdown in NSCLC cells. Through interacting with miR-331-3p, circHMGA2 could regulate the expression of HMGA2. In addition, circHMGA2/miR-331-3p and miR-331-3p/HMGA2 axes were affirmed in NSCLC regulation. In-vivo analysis indicated that circHMGA2 inhibition also reduced tumorigenesis and glycolysis of NSCLC via the miR-331-3p/HMGA2 axis. This study disclosed the oncogenic role of circHMGA2 and the regulatory circHMGA2/miR-331-3p/HMGA2 axis in NSCLC.
Collapse
Affiliation(s)
- Shenke Li
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| | - Jun Zhao
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Song Wen
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Min Li
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Faming Yu
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| | - Wenhui Wang
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Huamin Shao
- Department of Respiratory, Xinxiang Medical University, Puyang oilfield General Hospital, Puyang
| | - Dongliang Jiang
- Department of Respiratory, Puyang Oilfield General Hospital, Puyang
| |
Collapse
|
9
|
MicroRNA-877-5p Inhibits Cell Progression by Targeting FOXM1 in Lung Cancer. Can Respir J 2022; 2022:4256172. [PMID: 35756697 PMCID: PMC9217556 DOI: 10.1155/2022/4256172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Many researches revealed that microRNAs (miRNAs) function as potential oncogene or tumor suppressor gene. As an antioncogene, miR-877-5p was reduced in many tumors. Objective This research aimed to explore the biological role and mechanisms of miR-877-5p, which may help patients with non-small-cell lung cancer (NSCLC) find effective therapeutic targets. Methods The downstream targets of miR-877-5p were predicted by Bioinformatics software. RT-qPCR and western blot were employed to analyze the gene levels. The impacts of miR-877-5p and FOXM1 were assessed by cell function experiments. Results The miR-877-5p was reduced in NSCLC. In addition to this, it also inhibited cell progression of NSCLC cells in vitro. Moreover, the upregulation of FOXM1 expression restored the inhibitory effect of enhancement of miR-877-5p. Conclusions Taken together, miR-877-5p inhibited cell progression by directly targeting FOXM1, which may provide potential biomarkers for targeted therapy of NSCLC.
Collapse
|
10
|
Yang S, Wang L, Gu L, Wang Z, Wang Y, Wang J, Zhang Y. Mesenchymal stem cell-derived extracellular vesicles alleviate cervical cancer by delivering miR-331-3p to reduce LIMS2 methylation in tumor cells. Hum Mol Genet 2022; 31:3829-3845. [PMID: 35708510 DOI: 10.1093/hmg/ddac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate if extracellular vesicles (EVs) from bone marrow mesenchymal stem cells (BMSCs) deliver miR-331-3p to regulate LIMS2 methylation in cervical cancer cells. Cervical cancer cells were incubated with EVs from BMSCs with altered expression of miR-331-3p, DNMT3A or/and LIMS2 and then subjected to EdU, Transwell, flow cytometry and Western blotting analyses. Dual-luciferase reporter assay was conducted to verify the binding between miR-331-3p and DNMT3A. A xenograft model was established to evaluate the effect of BMSC-derived EV-miR-331-3p on cervical tumor growth. miR-331-3p was lowly and DNMT3A was highly expressed in cervical cancer. BMSC-derived EVs delivered miR-331-3p to control the behaviors of cervical cancer cells. miR-331-3p inhibited the expression of DNMT3A by binding DNMT3A mRNA. DNMT3A promoted LIMS2 methylation and reduced the expression of LIMS2. Overexpression of DNMT3A or silencing of LIMS2 in BMSCs counteracted the tumor suppressive effects of miR-331-3p. BMSC-derived EV-miR-331-3p also inhibited the growth of cervical tumors in vivo. BMSC-derived EVs alleviate cervical cancer partially by delivering miR-331-3p to reduce DNMT3A-dependent LIMS2 methylation in tumor cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yuan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Jianan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| |
Collapse
|
11
|
Bi W, Yang M, Xing P, Huang T. MicroRNA miR-331-3p suppresses osteosarcoma progression via the Bcl-2/Bax and Wnt/β-Catenin signaling pathways and the epithelial-mesenchymal transition by targeting N-acetylglucosaminyltransferase I (MGAT1). Bioengineered 2022; 13:14159-14174. [PMID: 35758024 PMCID: PMC9342255 DOI: 10.1080/21655979.2022.2083855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteosarcoma (OS) is a high-grade malignant disease that is a prevalent primary malignant sarcoma of the bone. The purpose of this investigation was to therefore elucidate the association between miR-331-3p and OS development and to identify a potential underlying mechanism. Key genes involved in OS were selected using GSE65071 dataset from the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted to detect miR-331-3p, MGAT1, the epithelial-mesenchymal transition (EMT), Bcl-2/Bax and Wnt/β-Catenin signaling pathways related proteins. Dual-luciferase reporter assay and TargetScan were used for validating interaction between MGAT1 mRNA and miR-331-3p. Biological effects of miR-331-3p and MGAT1 on OS cells were detected employing MTT, Transwell, wound healing and flow cytometry, respectively. MiR-331-3p was under-expressed in OS, and up-regulation or inhibition of its expression could significantly inhibit or promote the malignant phenotypes of OS cells. Furthermore, we found that MGAT1, a target of miR-331-3p, had elevated expression in OS. Interestingly, MGAT1 could partially alleviate the effect of miR-331-3p in vitro. Collectively, miR-331-3p acts as an critical tumor suppressor through inhibiting MGAT1, results in suppressed Wnt/β-Catenin pathway and decreased proliferation of OS cells; leads to increased apoptosis via Bcl-2/Bax pathway and inhibited migration and invasion ability via the EMT.
Collapse
Affiliation(s)
- Wen Bi
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Mengyue Yang
- Department of Cardiovascular, The First Hospital of China Medical University, Shenyang, China
| | - Pengfei Xing
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Tao Huang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Yao B, Zhu S, Wei X, Chen MK, Feng Y, Li Z, Xu X, Zhang Y, Wang Y, Zhou J, Tang N, Ji C, Jiang P, Zhao SC, Qin C, Feng N. The circSPON2/miR-331-3p axis regulates PRMT5, an epigenetic regulator of CAMK2N1 transcription and prostate cancer progression. Mol Cancer 2022; 21:119. [PMID: 35624451 PMCID: PMC9137111 DOI: 10.1186/s12943-022-01598-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and its mechanism remains poorly understood. Therefore, it is urgent to discover potential novel diagnostic biomarkers and therapeutic targets that can potentially facilitate the development of efficient anticancer strategies. METHODS A series of functional in vitro and in vivo experiments were conducted to evaluate the biological behaviors of PCa cells. RNA pulldown, Western blot, luciferase reporter, immunohistochemistry and chromatin immunoprecipitation assays were applied to dissect the detailed underlying mechanisms. High-throughput sequencing was performed to screen for differentially expressed circRNAs in PCa and adjacent normal tissues. RESULTS Upregulation of protein arginine methyltransferase 5 (PRMT5) is associated with poor progression-free survival and the activation of multiple signaling pathways in PCa. PRMT5 inhibits the transcription of CAMK2N1 by depositing the repressive histone marks H4R3me2s and H3R8me2s on the proximal promoter region of CAMK2N1, and results in malignant progression of PCa both in vitro and in vivo. Moreover, the expression of circSPON2, a candidate circRNA in PCa tissues identified by RNA-seq, was found to be associated with poor clinical outcomes in PCa patients. Further results showed that circSPON2 induced PCa cell proliferation and migration, and that the circSPON2-induced effects were counteracted by miR-331-3p. Particularly, circSPON2 acted as a competitive endogenous RNA (ceRNA) of miR-331-3p to attenuate the repressive effects of miR-331-3p on its downstream target PRMT5. CONCLUSIONS Our findings showed that the epigenetic regulator PRMT5 aggravates PCa progression by inhibiting the transcription of CAMK2N1 and is modulated by the circSPON2/miR-331-3p axis, which may serve as a potential therapeutic target for patients with aggressive PCa.
Collapse
Affiliation(s)
- Bing Yao
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Sha Zhu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming-Kun Chen
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Yangkun Feng
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhimin Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinyu Xu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yuwei Zhang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Wang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Jingwan Zhou
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Ningyuan Tang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Chengjian Ji
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jiang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China. .,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ninghan Feng
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China. .,Wuxi Clinical College, Nantong University, Wuxi, 214002, China.
| |
Collapse
|
13
|
A Novel Prognostic Model Based on Seven Necroptosis-Related miRNAs for Predicting the Overall Survival of Patients with Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3198590. [PMID: 35372581 PMCID: PMC8972154 DOI: 10.1155/2022/3198590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related deaths worldwide. This study is aimed at constructing a risk scoring model based on necroptosis-related miRNAs to predict prognosis of LUAD. Expression profile of miRNA in LUAD was downloaded from The Cancer Genome Atlas (TCGA) database. We screened the differentially expressed necroptosis-related miRNAs between LUAD patients and normal samples, thus constructed a seven miRNA-based risk stratification on the basis of the TGCA cohort. This risk stratification was prove to be effective in predicting the overall survival (OS) of patients with LUAD. Furthermore, we constructed a nomogram model based on the combination of risk characteristics and clinicopathological features, which was also prove to be accurate and efficient in predicting OS of LUAD patients. Functional enrichment analyses on the targeted genes of these miRNAs with prognostic value were carried out. Results indicated that these targeted genes were closely related to the development and metastasis of tumors. In summary, our research has developed a prognostic model based on the expression of miRNAs related to necroptosis. This model might be used to predict the prognosis of LUAD accurately, which might be helpful in improving treatment efficacy of LUAD.
Collapse
|
14
|
Prognostic Lnc-S100B-2 Affects Cell Apoptosis and Microenvironment of Colorectal Cancer through MLLT10 Signaling. JOURNAL OF ONCOLOGY 2022; 2022:3565118. [PMID: 35126515 PMCID: PMC8808143 DOI: 10.1155/2022/3565118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/19/2022]
Abstract
Long noncoding RNA (LncRNA) is closely associated with the development of colorectal cancer (CRC). The chip data and clinical information of GSE104364 and GSE151021 were downloaded by GEOquery. Limma and Kaplan–Meier analysis were performed. Lnc-S100B-2 was obtained, and high expression of Lnc-S100B-2 was predicted to be associated with a lower survival rate. Online software was adopted to predict downstream regulatory genes, and miR-331-3p and Mixed Lineage Leukemia Translocated to 10 (MLLT10) were screened and verified. After silencing Lnc-S100B-2 and MLLT10, the proliferative activity of CRC cells decreased, and the apoptosis rate increased. At the gene and protein levels, the expressions of PCNA, Ki67, and Bcl-2 were decreased in the sh-Lnc-S100B-2 group, sh-MLLT10 group, and sh-Lnc-S100B-2 + sh-MLLT10 group, while the expressions of cleaved caspase 3, caspase 9, and Bax were increased. In vivo, the volume and mass of the tumor decreased in the sh-Lnc-S100B-2 + sh-MLLT10 group. Proliferation and apoptosis-related index (PCNA, Ki67, cleaved caspase 3, caspase 9, Bax, and Bcl-2) expression level was also altered. Meanwhile, the infiltration of immune cells (CD3 (-), CD16 (+), and CD11b (+) cells) decreased. The expressions of epithelial-mesenchymal transformation (EMT) related indicators (E-cadherin, N-cadherin, Vimentin, β-catenin, Snail, and Slug) were changed. E-cadherin and β-catenin were increased in the sh-Lnc-S100B-2 + sh-MLLT10 group, while N-cadherin, vimentin, snail, and slug were decreased. In conclusion, our study found that the expression of Lnc-S100B-2 was dysregulated in CRC. Lnc-S100B-2 could affect cell apoptosis and the microenvironment of CRC through regulating MLLT10.
Collapse
|
15
|
Liu Y, Chen Q, Zhu Y, Wang T, Ye L, Han L, Yao Z, Yang Z. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov 2021; 7:210. [PMID: 34381023 PMCID: PMC8358062 DOI: 10.1038/s41420-021-00596-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Distant metastasis is the main cause of death for cancer patients. Recently, the newly discovered programmed cell death includes necroptosis, pyroptosis, and ferroptosis, which possesses an important role in the process of tumor metastasis. At the same time, it is widely reported that non-coding RNA precisely regulates programmed death and tumor metastasis. In the present review, we summarize the function and role of necroptosis, pyrolysis, and ferroptosis involving in cancer metastasis, as well as the regulatory factors, including non-coding RNAs, of necroptosis, pyroptosis, and ferroptosis in the process of tumor metastasis.
Collapse
Affiliation(s)
- Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Qiuyun Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanan Zhu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lijuan Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, China.
| |
Collapse
|
16
|
Wang Y. circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis. Cancer Cell Int 2021; 21:85. [PMID: 33536022 PMCID: PMC7860208 DOI: 10.1186/s12935-021-01791-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer, with a poor prognosis. The roles of circular RNAs (circRNAs) in tumors have been initially clarified. In this study, we probed into the functions and underlying molecular mechanisms of circ-ANXA7 in LUAD. Methods According to circRNA microarray analysis based on 40 pairs of LUAD tissues and non-tumor tissues, a novel circ-ANXA7 was up-regulated in LUAD, which was verified in LUAD tissues and cells by RT-qPCR. Correlation between its expression and clinical features of LUAD was analyzed. When transfected with sh-circ-ANXA7, proliferation, invasion, and migration of LUAD cells were determined by a series of functional assays. Furthermore, tumor growth was investigated in nude mice injected with sh-circ-ANXA7. Dual luciferase report and gain and loss assays were used to confirm the relationships between circ-ANXA7 and miR-331, miR-331 and LAD1. Results circ-ANXA7 was up-regulated in LUAD tissues and cells. Its high expression promoted proliferation, migration, and invasion of LUAD cells as well as tumor growth. High circ-ANXA7 expression usually predicted a poorer prognosis for LUAD patients. Furthermore, circ-ANXA7 could accelerate proliferation and invasion of LUAD cells by targeting miR-331. miR-331 directly bound to the 3′-UTR of LAD1. LAD1 induced proliferation and invasion of LUAD cells, which was reversed after co-transfection with circ-ANXA7 knockdown. LAD1 expression could be an independent prognostic marker for LUAD by univariate and multivariate analysis. Conclusions Our research identified a novel circ-ANXA7 for LUAD, which could facilitate proliferation, migration, and invasion of LUAD cells by miR-331/ LAD1 axis. circ-ANXA7 could become a promising prognosis and treatment target for LUAD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Medical Laboratory, Zhumadian City Central Hospital, No. 747 Zhonghua Avenue, Yicheng District, Zhumadian, 463000, Henan, China.
| |
Collapse
|
17
|
Gong S, Ying L, Fan Y, Sun Z. Fentanyl Inhibits Lung Cancer Viability and Invasion via Upregulation of miR-331-3p and Repression of HDAC5. Onco Targets Ther 2020; 13:13131-13141. [PMID: 33380803 PMCID: PMC7767728 DOI: 10.2147/ott.s281095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases and remains the primary cause of cancer-related deaths worldwide. Fentanyl is a commonly utilized anesthetic during the process of tumor resection, and exhibits inhibitory effects on the progression of numerous cancer types, including pancreatic cancer, colorectal cancer and gastric cancer. However, the effects of fentanyl on the cell viability and invasion of NSCLC has not been investigated. Current study aimed to investigate the effects and the mechanisms underlying the effects of fentanyl on NSCLC. Methods The expression of μ-opioid receptor (MOR) was proved by flow cytometry. The expression of microRNA-331-3p (miR-331-3p) and histone deacetylase 5 (HDAC5) in NSCLC tissues and cell lines are evaluated by reverse transcription-quantitative PCR (RT-qPCR) and Western blot, respectively. Cell viability and invasion are measured by cell counting kit-8 (CCK-8) assay and transwell assay, respectively. The interaction between miR-331-3p and 3ʹ-untranslated region (UTR) of HDAC5 is predicted by TargetScan 7.1 (http://www.targetscan.org/vert_71/), validated by dual luciferase assay, RT-qPCR and Western blot. Results There was lower miR-331-3p expression and higher HDAC5 expression in NSCLC cell lines A549 and CALU-1 compared with BEAS-2B, which was reversed by fentanyl administration. miR-331-3p targeted 3ʹ-UTR of HDAC5 in NSCLC cell lines A549 and CALU-1. miR-331-3p inhibitor partially abrogated the inhibitory effects of fentanyl on NSCLC cell viability and invasion by targeting HDAC5. In addition, there was higher HDAC5 expression and lower miR-331-3p expression in tumor tissues which were isolated from patients with NSCLC compared to the adjacent normal tissues, and miR-331-3p was negatively correlated with HDAC5 in NSCLC tumor tissues. Conclusion Fentanyl inhibits the viability and invasion of NSCLC cells by induction of miR-331-3p and reduction of HDAC5.
Collapse
Affiliation(s)
- Shengkai Gong
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Liang Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Yu'ning Fan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|