1
|
Xiong W, Yang J. CircSEC24A induces KLF8 expression to promote the malignant progression of non-small cell lung cancer by regulating miR-1253. Thorac Cancer 2024. [PMID: 39465973 DOI: 10.1111/1759-7714.15450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVES This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism. METHODS RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis. RESULTS CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo. CONCLUSIONS CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| | - Jinhua Yang
- Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
2
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Kim JY, Jung EJ, Kim JM, Son Y, Lee HS, Kwag SJ, Park JH, Cho JK, Kim HG, Park T, Jeong SH, Jeong CY, Ju YT. MiR‑221 and miR‑222 regulate cell cycle progression and affect chemosensitivity in breast cancer by targeting ANXA3. Exp Ther Med 2023; 25:127. [PMID: 36845963 PMCID: PMC9947582 DOI: 10.3892/etm.2023.11826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/15/2022] [Indexed: 02/10/2023] Open
Abstract
Breast malignancy remains one of the most common causes of cancer-associated mortalities among women. MicroRNA (miR)-221 and miR-222 are homologous miRs and have a substantial impact on cancer progression. In the present study, the regulatory mechanisms of miR-221/222 and its target annexin A3 (ANXA3) in breast cancer cells were investigated. Breast tissue samples were collected to evaluate the expression patterns of miR-221/222 levels in breast cancer cell lines and cancer tissues according to clinical characteristics. The levels of miR-221/222 were increased or decreased in cancer cell lines compared with normal breast cell lines according to cell line subtype. Subsequently, the changes in the progression and invasion of breast cancer cells were investigated using cell proliferation, invasion assay, gap closure and colony formation assays. Western blotting of cell cycle proteins and flow cytometry were performed to evaluate the possible pathway of miR-221/222 and ANXA3 axis. Chemosensitivity tests were performed to explore the suitability of the miR-221/222 and ANXA3 axis as a therapeutic target in breast cancer. The expression levels of miR-221/222 were associated with aggressive characteristics of breast cancer subtypes. Cell transfection assay demonstrated the regulation of breast cancer proliferation and invasiveness by miR-221/222. MiR-221/222 directly targeted the 3'-untranslated region of ANXA3 and suppressed the expression of ANXA3 at the mRNA and protein levels. In addition, miR-221/222 negatively regulated cell proliferation and the cell cycle pathway in breast cancer cells by targeting ANXA3. In combination with adriamycin, downregulation of ANXA3 may sensitize adriamycin-induced cell death to induction of persistent G2/M and G0/G1 arrest. Decreased expression of ANXA3 through increased expression of miR-221/222 reduced breast cancer progression and increased the effectiveness of the chemotherapy drug. The present results indicated the miR-221/222 and ANXA3 axis to be a possible novel therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Eun Jung Jung
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Jae-Myung Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Youngsim Son
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Han Shine Lee
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Seung-Jin Kwag
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Jin-Kyu Cho
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Han-Gil Kim
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Taejin Park
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Gyeongsang 51472, Republic of Korea
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Gyeongsang 52727, Republic of Korea
| |
Collapse
|
5
|
Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L. Annexin A protein family: Focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 2023; 11:1141331. [PMID: 36936694 PMCID: PMC10020606 DOI: 10.3389/fcell.2023.1141331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, China
| | - Guichun Li
- Department of Traditional Chinese Medicine, The People’s Hospital of Zhaoyuan City, Yantai, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| |
Collapse
|
6
|
Abstract
Annexin A3 (ANXA3), an annexin family member, contains 36 kDa and 33 kDa isoforms. Similar to other annexin members, ANXA3 plays an important role in the development of human diseases. Recent studies have reported that abnormal ANXA3 expression is closely associated with the development, progression, metastasis, drug resistance and prognosis of several malignant tumours, such as breast cancer, lung cancer and hepatocellular carcinoma. ANXA3 exerts its role by regulating cell proliferation, migration and apoptosis via the phosphatidylinositol-3 kinase/Akt, nuclear factor-κB (NF-κB), c-JUN N-terminal kinase, extracellular signal-regulated kinase and hypoxia-inducible factor-1 signalling pathways. ANXA3 may act as a novel target for the early diagnosis and treatment of tumours. The present review summarises the recent progress in the role of ANXA3 and its regulatory pathways in tumours.
Collapse
Affiliation(s)
- Chao Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Nannan Li
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Xue Feng
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
7
|
Yang L, Lu P, Yang X, Li K, Qu S. Annexin A3, a Calcium-Dependent Phospholipid-Binding Protein: Implication in Cancer. Front Mol Biosci 2021; 8:716415. [PMID: 34355022 PMCID: PMC8329414 DOI: 10.3389/fmolb.2021.716415] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Annexin A3 (ANXA3), also known as lipocortin III and placental anticoagulant protein III, has been reported to be dysregulated in tumor tissues and cancer cell lines, and harbors pronounced diagnostic and prognostic value for certain malignancies, such as breast, prostate, colorectal, lung and liver cancer. Aberrant expression of ANXA3 promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and therapy resistance to multiple chemotherapeutic drugs including platinum-based agents, fluoropyrimidines, cyclophosphamide, doxorubicin, and docetaxel. Genetic alterations on the ANXA3 gene have also been reported to be associated with the propensity to form certain inherited, familial tumors. These diverse functions of ANXA3 in tumors collectively indicate that ANXA3 may serve as an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. In this review, we dissect the role of ANXA3 in cancer in detail.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Xiaohui Yang
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kaiguo Li
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Song Qu
- Key Laboratory of High-Incidence Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|