1
|
Ma L, Liu X, Roopashree R, Kazmi SW, Jasim SA, Phaninder Vinay K, Fateh A, Yang F, Rajabivahid M, Dehghani-Ghorbi M, Akhavan R. Long non-coding RNAs (lncRNAs) in cancer development: new insight from STAT3 signaling pathway to immune evasion. Clin Exp Med 2025; 25:53. [PMID: 39932585 DOI: 10.1007/s10238-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 02/14/2025]
Abstract
Overcoming cancer and enhancing patient survival are becoming increasingly challenging due to the uncontrolled growth and metastasis of colorectal cancer cells. In order to provide effective cancer treatment and minimize the malignancy of cancer cells, it is necessary to understand how complex signaling networks contribute to their invasion and proliferation. The signal transducer and activator of transcription 3 (STAT3) is a promising target due to its involvement in various cellular functions, including apoptosis, immunosuppression, cell invasion, migration, and proliferation. Dysregulation of STAT3 signaling is associated with diseases, particularly colorectal cancer. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs, are essential for the progression, apoptosis, and metastasis of CRC as they regulate key signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a key function in regulating immune cells function through STAT3. In this study, we comprehensively reviewed the regulatory roles of different lncRNAs on STAT3 and the mutual effects of this pathway in various aspects of carcinogenesis, including proliferation, apoptosis, metastasis, drug resistance, and angiogenesis. Moreover, we investigate the effects of lncRNA/STAT3 axis on the function of different immune cells that play critical role in the tumor microenvironment.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 110000, China
| | - XuQing Liu
- Special Service Department, 923rd Hospital of The Joint Logistic Support Force of the Chinese Peoples Liberation Army (Geriatric Disease Area 2), Nanning, 530020, Guangxi, China
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | | | - K Phaninder Vinay
- Department of ECE, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ata Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fang Yang
- Department of Emergency, The Eighth Medical Center of PLA General Hospital, Beijing, 10091, China
| | - Mansour Rajabivahid
- Hematology Oncology Subspecialist, Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Rahbar Farzam O, Najafi S, Amini M, Rahimi Z, Dabbaghipour R, Zohdi O, Asemani Shahgoli G, Baradaran B, Akbari B. Interplay of miRNAs and lncRNAs in STAT3 signaling pathway in colorectal cancer progression. Cancer Cell Int 2024; 24:16. [PMID: 38185635 PMCID: PMC10771635 DOI: 10.1186/s12935-023-03202-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024] Open
Abstract
In recent decades, colorectal cancer (CRC) has turned into one of the most widespread malignancies, and the incidence of this malignancy is expected to increase. Despite considerable improvements in therapeutic approaches, the prognosis, and the management of CRC face many problems. Likely, the main limitation in the successful treatment of CRC is the lack of appropriate clinical therapeutic targets. As an effective target, the signal transducer and activator of transcription 3 (STAT3) are regulated by a wide range of genes and involved in cellular processes, including cell growth, migration, invasion, immunosuppression, and angiogenesis. Aberrant regulation of STAT3 signaling leads to cellular dysfunction, diseases, and malignancies, including CRC. Consequently, targeting this signaling pathway is considered one of the therapeutic strategies used in CRC treatment. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA molecules with partial or no protein-coding activity that participate in gene regulation at epigenetic, transcriptional, and post-transcriptional levels and regulate multiple signaling pathways, including STAT3 signaling (especially JAK/STAT). Therefore, these regulatory molecules are suggested to be very promising targets to present new insights into overcoming the limitations of conventional therapeutic strategies. Therefore, the current review study aimed to summarize the therapeutic and diagnostic significance of miRNAs and lncRNAs and their therapeutic and diagnostic significance related to the expression and activity of STAT3 in CRC.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Daneshgah Avenue, Kermanshah, Iran
- Medical Biology Research Center, Daneshgah Avenue, Kermanshah, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Zohdi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Fu L, Xu S, Zhou Y, Huang J, Qiu J, Huang P. Knockdown of LncRNA DICER1-AS1 arrests the cell cycle, inhibits cell proliferation, and induces cell apoptosis by regulating CDC5L nuclear transfer in osteosarcoma. Connect Tissue Res 2023; 64:519-531. [PMID: 37310074 DOI: 10.1080/03008207.2023.2223289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND DICER1-AS1 is reported to promote the progression and disturb the cell cycle in osteosarcoma; however, its mechanism has rarely been studied. MATERIALS AND METHODS DICER1-AS1 expression levels were evaluated by qPCR and fluorescence in situ hybridization (FISH). The total, nuclear, and cytosolic levels of CDC5L were measured by western blotting and immunofluorescence (IF). Cell proliferation, apoptosis, and cell cycle analyses were conducted using the colony formation, CCK-8 assay, terminal transferase-mediated UTP nick end-labeling kit (TUNEL) assay, and flow cytometry. Levels of cell proliferation-, cell cycle-, and cell apoptosis-related proteins were determined by western blotting. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to evaluate the relationship between DICER1-AS1 and CDC5L. RESULTS LncRNA DICER1-AS1 was highly expressed in samples of osteosarcoma tissue and in osteosarcoma cell lines. DICER1-AS1 knockdown inhibited cell proliferation, promoted cell apoptosis, and disturbed the cell cycle. Moreover, DICER1-AS1 was found to bind with CDC5L, and knockdown of DICER-AS1 inhibited the nuclear transfer of CDC5L. DICER1-AS1 knockdown also reversed the effects of CDC5L overexpression on cell proliferation, apoptosis, and the cell cycle. Moreover, CDC5L inhibition suppressed cell proliferation, promoted cell apoptosis, and disturbed the cell cycle, and those effects were further enhanced by DICER1-AS1 knockdown. Finally, DICER1-AS knockdown inhibited tumor growth and proliferation, and promoted cell apoptosis in vivo. CONCLUSION LncRNA DICER1-AS1 knockdown inhibits the nuclear transfer of CDC5L protein, arrests the cell cycle, and induces apoptosis to suppress the development of osteosarcoma. Our results suggest a novel target (DICER1-AS1) for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Laihua Fu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Songfeng Xu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yang Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jingyang Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jin Qiu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pengzhou Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
4
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
6
|
Li W, Ke C, Yang C, Li J, Chen Q, Xia Z, Xu J. LncRNA DICER1-AS1 promotes colorectal cancer progression by activating the MAPK/ERK signaling pathway through sponging miR-650. Cancer Med 2023; 12:8351-8366. [PMID: 36708020 PMCID: PMC10134332 DOI: 10.1002/cam4.5550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a disease with high morbidity and mortality rates globally. Long noncoding RNAs (lncRNAs) play a fundamental role in tumor progression, and increasing attention has been paid to their role in CRC. This study aimed to determine the function of lncRNA DICER1 antisense RNA 1 (DICER1-AS1) in CRC and confirm its potential regulatory mechanisms in CRC. METHODS The publicly available dataset was used to assess DICER1-AS1 function and expression in CRC. RT-qPCR or western blot assays were performed to verify DICER1-AS1, miR-650, and mitogen-activated protein kinase 1 (MAPK1) expression in CRC cells or tissues. To determine the function of DICER1-AS1, we performed CCK-8, colony formation, transwell, cell cycle, and in vivo animal assays. Using RNA sequence analysis, luciferase reporter assays, and bioinformatics analysis, the connection between DICER1-AS1, MAPK1, and miR-650 was investigated. RESULTS DICER1-AS1 was significantly upregulated in CRC tissue compared to normal colon tissue. High DICER1-AS1 expression suggested a poor prognosis in CRC patients. Functionally, upregulation of DICER1-AS1 effectively promoted CRC proliferation, migration, and invasion ex vivo and tumor progression in vivo. Mechanistically, DICER1-AS1 functions as a competitive endogenous RNA (ceRNA) that sponges miR-650 to upregulate MAPK1, promotes ERK1/2 phosphorylation, and sequentially activates the MAPK/ERK signaling pathway. CONCLUSION Our investigations found that upregulation of DICER1-AS1 activates the MAPK/ERK signaling pathway by sponging miR-650 to promote CRC progression, revealing a possible clinically significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Wenfei Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiyan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qikui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongsheng Xia
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jihao Xu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Kaya IH, Al-Harazi O, Colak D. Transcriptomic data analysis coupled with copy number aberrations reveals a blood-based 17-gene signature for diagnosis and prognosis of patients with colorectal cancer. Front Genet 2023; 13:1031086. [PMID: 36685857 PMCID: PMC9854115 DOI: 10.3389/fgene.2022.1031086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer and third leading cause of cancer-associated deaths worldwide. Diagnosing CRC patients reliably at an early and curable stage is of utmost importance to reduce the risk of mortality. Methods: We identified global differentially expressed genes with copy number alterations in patients with CRC. We then identified genes that are also expressed in blood, which resulted in a blood-based gene signature. We validated the gene signature's diagnostic and prognostic potential using independent datasets of gene expression profiling from over 800 CRC patients with detailed clinical data. Functional enrichment, gene interaction networks and pathway analyses were also performed. Results: The analysis revealed a 17-gene signature that is expressed in blood and demonstrated that it has diagnostic potential. The 17-gene SVM classifier displayed 99 percent accuracy in predicting the patients with CRC. Moreover, we developed a prognostic model and defined a risk-score using 17-gene and validated that high risk score is strongly associated with poor disease outcome. The 17-gene signature predicted disease outcome independent of other clinical factors in the multivariate analysis (HR = 2.7, 95% CI = 1.3-5.3, p = 0.005). In addition, our gene network and pathway analyses revealed alterations in oxidative stress, STAT3, ERK/MAPK, interleukin and cytokine signaling pathways as well as potentially important hub genes, including BCL2, MS4A1, SLC7A11, AURKA, IL6R, TP53, NUPR1, DICER1, DUSP5, SMAD3, and CCND1. Conclusion: Our results revealed alterations in various genes and cancer-related pathways that may be essential for CRC transformation. Moreover, our study highlights diagnostic and prognostic value of our gene signature as well as its potential use as a blood biomarker as a non-invasive diagnostic method. Integrated analysis transcriptomic data coupled with copy number aberrations may provide a reliable method to identify key biological programs associated with CRC and lead to improved diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Ibrahim H. Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,*Correspondence: Dilek Colak,
| |
Collapse
|
8
|
Hu Y, Tang J, Xu F, Chen J, Zeng Z, Han S, Wang F, Wang D, Huang M, Zhao Y, Huang Y, Zhuo W, Zhao G. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res 2022; 41:69. [PMID: 35183226 PMCID: PMC8857805 DOI: 10.1186/s13046-022-02285-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glycolysis is a pivotal process in metabolic reprogramming of tumorigenesis. Previous research has indicated that lncRNAs might play crucial roles in glycolysis of various tumors. However, the function of lncRNAs in glycolysis of pancreatic cancer has not been fully elucidated. Methods Bio-information analyses were applied to reveal the potential glycolysis-associated lncRNA. RT-PCR and fluorescence in situ hybridization (FISH) assays were applied to detect the expression of antisense RNA1 of DICER1 (DICER1-AS1) in pancreatic cancer tissues and cell lines. Gain- and loss-of-function experiments were performed to evaluate the roles of DICER1-AS1 in glycolysis and tumorigenesis of PC. Mechanistic experiments including luciferase reporter assay, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) were employed to uncover the downstream targets and regulatory mechanism of DICER1-AS1 in glycolysis of PC. Results Bio-information analysis indicated that DICER1-AS1 was downregulated in PC and negatively correlated with glycolytic genes expression. Meanwhile, overexpression of DICER1-AS1 inhibited glycolysis, proliferation, and metastasis of PC cells both in vitro and in vivo. Mechanistically, DICER1-AS1 promoted transcription of its sense gene DICER1 by recruiting transcriptional factor YY1 to the DICER1 promoter. Meanwhile, DICER1 promoted maturation of miR-5586-5p which consequently inhibited glycolytic gene expression including LDHA, HK2, PGK1, and SLC2A1. Notably, enhanced interaction between N6-methyladenosine (m6A) reader YTHDF3 and DICER1-AS1 led to degradation of DICER1-AS1 in response to glucose depletion. Moreover, our data revealed that YTHDF3 was a critical target for miR-5586-5p, by which forming a negative feedback with DICER1-AS1 to regulate glycolysis of PC. Conclusion Our results implicate a negative feedback of m6A reader YTHDF3 and glycolytic lncRNA DICER1-AS1 is involved in glycolysis and tumorigenesis of PC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02285-6.
Collapse
|
9
|
Xiang Z, Chen X, Lv Q, Peng X. A Novel Inflammatory lncRNAs Prognostic Signature for Predicting the Prognosis of Low-Grade Glioma Patients. Front Genet 2021; 12:697819. [PMID: 34408772 PMCID: PMC8365518 DOI: 10.3389/fgene.2021.697819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background As immunotherapy has received attention as new treatments for brain cancer, the role of inflammation in the process of glioma is of particular importance. Increasing studies have further shown that long non-coding RNAs (lncRNAs) are important factors that promote the development of glioma. However, the relationship between inflammation-related lncRNAs and the prognosis of glioma patients remains unclear. The purpose of this study is to construct and validate an inflammation-related lncRNA prognostic signature to predict the prognosis of low-grade glioma patients. Methods By downloading and analyzing the gene expression data and clinical information of the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) patients with low-grade gliomas, we could screen for inflammatory gene-related lncRNAs. Furthermore, through Cox and the Least Absolute Shrinkage and Selection Operator regression analyses, we established a risk model and divided patients into high- and low-risk groups based on the median value of the risk score to analyze the prognosis. In addition, we analyzed the tumor mutation burden (TMB) between the two groups based on somatic mutation data, and explored the difference in copy number variations (CNVs) based on the GISTIC algorithm. Finally, we used the MCPCounter algorithm to study the relationship between the risk model and immune cell infiltration, and used gene set enrichment analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to explore the enrichment pathways and biological processes of differentially expressed genes between the high- and low-risk groups. Results A novel prognostic signature was constructed including 11 inflammatory lncRNAs. This risk model could be an independent prognostic predictor. The patients in the high-risk group had a poor prognosis. There were significant differences in TMB and CNVs for patients in the high- and low-risk groups. In the high-risk group, the immune system was activated more significantly, and the expression of immune checkpoint-related genes was also higher. The GSEA, GO, and KEGG analyses showed that highly expressed genes in the high-risk group were enriched in immune-related processes, while lowly expressed genes were enriched in neuromodulation processes. Conclusion The risk model of 11 inflammation-related lncRNAs can serve as a promising prognostic biomarker for low-grade gliomas patients.
Collapse
Affiliation(s)
- Zijin Xiang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueru Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Lu Y, Wang W, Liu Z, Ma J, Zhou X, Fu W. Long non-coding RNA profile study identifies a metabolism-related signature for colorectal cancer. Mol Med 2021; 27:83. [PMID: 34344319 PMCID: PMC8336290 DOI: 10.1186/s10020-021-00343-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Heterogeneity in colorectal cancer (CRC) patients provides novel strategies in clinical decision-making. Identifying distinctive subgroups in patients can improve the screening of CRC and reduce the cost of tests. Metabolism-related long non-coding RNA (lncRNA) can help detection of tumorigenesis and development for CRC patients. METHODS RNA sequencing and clinical data of CRC patients which extracted and integrated from public databases including The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were set as training cohort and validation cohort. Metabolism-related genes were acquired from Kyoto Encyclopedia of Genes and Genomes (KEGG) and the metabolism-related lncRNAs were filtered using correlation analysis. The risk score was calculated based on lncRNAs with prognostic value and verified through survival curve, receiver operating characteristic (ROC) curve and risk curve. Prognostic factors of CRC patients were also analyzed. Nomogram was constructed based on the results of cox regression analyses. The different immune status was observed in the single sample Gene Set Enrichment Analysis (ssGSEA). RESULTS The training cohort and the validation cohort enrolled 432 and 547 CRC patients respectively. A total of 23 metabolism-related lncRNAs with prognostic value were screened out and 10 of which were significantly differentially expressed between tumour and normal tissues. Finally, 8 lncRNAs were used to establish a risk score (DICER1-AS1, PCAT6, GAS5, PRR7-AS1, MCM3AP-AS1, GAS6-AS1, LINC01082 and ADIRF-AS1). Patients were divided into high-risk and low-risk groups according to the median of risk scores in training cohort and the survival curves indicated that the survival prognosis was significantly different. The area under curve (AUC) of the ROC curve in two cohorts were both greater than 0.6. The age, tumour stage and risk score were selected as independent factors and used to construct a nomogram to predict CRC patients' survival rate with the c-index of 0.806. The ssGSEA indicated that the risk score was associated with immune cells and functions. CONCLUSIONS Our systematic study established a metabolism-related lncRNA signature to predict outcomes of CRC patients which may contribute to individual prevention and treatment.
Collapse
Affiliation(s)
- Yongqu Lu
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wendong Wang
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenzhen Liu
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Junren Ma
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
11
|
Wang P, Sun Y, Yang Y, Chen Y, Liu H. Circ_0067835 Knockdown Enhances the Radiosensitivity of Colorectal Cancer by miR-296-5p/IGF1R Axis. Onco Targets Ther 2021; 14:491-502. [PMID: 33500625 PMCID: PMC7822227 DOI: 10.2147/ott.s281011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant cancers globally. Circular RNAs (circRNAs) have been implicated in the development of CRC. In this paper, we set to explore the precise action of circ_0067835 in CRC progression and radioresistance. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to evaluate the expression of circ_0067835, microRNA-296-5p (miR-296-5p) and insulin-like growth factor 1 receptor (IGF1R). Western blot was used to measure the level of IGF1R protein. Cell proliferation, cell cycle distribution and apoptosis were determined by Cell Counting Kit-8 (CCK-8), colony formation, flow cytometry and caspase-3 activity assays, respectively. The direct relationship between miR-296-5p and circ_0067835 or IGF1R was verified by dual-luciferase reporter assays. Additionally, in vivo assays were applied to confirm the role of circ_0067835 in vivo. Results Exosomal circ_0067835 was upregulated in the serum of CRC patients after radiotherapy. Exosome-mediated circ_0067835 knockdown repressed cell proliferation, cell cycle progression, and enhanced cell apoptosis and radiosensitivity in vitro. Circ_0067835 sponged miR-296-5p to regulate IGF1R expression in CRC cells. Moreover, the knockdown of circ_0067835 regulated CRC cell behaviors by up-regulating miR-296-5p and down-regulating IGF1R in vitro. Furthermore, circ_0067835 knockdown diminished tumor growth and promoted cell radiosensitivity in vivo. Conclusion Circ_0067835 knockdown suppressed CRC progression and enhanced CRC cell radiosensitivity partially by the miR-296-5p/IGF1R axis. The findings established a rationale that targeting circ_0067835 might be a promising point for improving CRC treatment.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yongmin Sun
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Yang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yanzhao Chen
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Hui Liu
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|