1
|
Kang CW, Oh JH, Wang EK, Bao Y, Kim YB, Lee MH, Lee YJ, Jo YS, Ku CR, Lee EJ. Excess endocrine growth hormone in acromegaly promotes the aggressiveness and metastasis of triple-negative breast cancer. iScience 2024; 27:110137. [PMID: 39006481 PMCID: PMC11246000 DOI: 10.1016/j.isci.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Pituitary adenoma-induced excess endocrine growth hormone (GH) secretion can lead to breast cancer development and metastasis. Herein, we used an acromegaly mouse model to investigate the role of excess endocrine GH on triple-negative breast cancer (TNBC) growth and metastasis. Additionally, we aimed to elucidate the molecular mechanism of transcription factor 20 (TCF20)/nuclear factor erythroid 2-related factor 2 (NRF2) signaling-mediated aggressiveness and metastasis of TNBC. Excess endocrine GH induced TCF20 activates the transcription of NRF2 and NRF2-target genes to facilitate TNBC metastasis. Inhibition of GH receptor (GHR) and TCF20 activity using the GHR antagonist or small-interfering RNA-induced gene knockdown resulted in reduced tumor volume and metastasis, suggesting that excess endocrine GH stimulates TCF20/NRF2 pathways in TNBC and promotes metastasis to the lung. GHR inhibitors present an effective therapeutic strategy to prevent TNBC cell growth and metastasis. Our findings revealed functional and mechanistic roles of the GH-TCF20-NRF2 signaling axis in TBNC progression.
Collapse
Affiliation(s)
- Chan Woo Kang
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hun Oh
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Kyung Wang
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yaru Bao
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Bin Kim
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Min-Ho Lee
- University of Medicine and Health Sciences, New York, NY, USA
| | - Yang Jong Lee
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Seok Jo
- Open NBI Convergence Technology Research Laboratory, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jig Lee
- Department of Internal Medicine Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Transcriptional profiling of drug-induced liver injury biomarkers: association of hepatic Srebf1/Pparα signaling and crosstalk of thrombin, alcohol dehydrogenase, MDR and DNA damage regulators. Mol Cell Biochem 2022:10.1007/s11010-022-04648-1. [PMID: 36583794 DOI: 10.1007/s11010-022-04648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Cell stress transcribing genes provide a diverse platform of molecular mediators that vary in response to toxicity. Common drug-induced liver injury (DILI) biomarkers are usually expressed in mild toxicity and limited to confirming it rather than categorizing its intensity. Thus, new parametric biomarkers are needed to be explored. Classifying the toxicological response based on the dose-level and severity of stimuli will aid in the evaluation and approach against drug exposure. The present research explored the involvement of gene expression of potential biomarkers as a severity-specific hallmark in different acetaminophen (APAP)-induced hepatotoxicity levels in C57BL/6 mice. The differentially expressed genes were annotated and analyzed using bioinformatics tools to predict canonical pathways altered by DILI. The results revealed alteration in genes encoding for antioxidant enhancement; Slc7a11, bile efflux; MDR4, fatty acid metabolism and transcriptional factors namely Srebf1 and Pparα. Potential APAP toxicity biomarkers included Adh1 and thrombin, and other DNA damage and stress chaperones which were changed at least fourfold between control and the three tested severity models. The current investigation demonstrates a dose-mediated association of several hallmark genes in APAP-induced liver damage and addressed the involvement of uncommonly studied molecular responses. Such biomarkers can be further developed into predictive models, translated for risk assessment against drug exposure and guide in building theragnostic targets.
Collapse
|
3
|
Tang SJ, Fan KH, You GR, Huang SF, Kang CJ, Huang YF, Huang YC, Chang JTC, Cheng AJ. Tumor Suppressor miRNA-503 Inhibits Cell Invasion in Head and Neck Cancer through the Wnt Signaling Pathway via the WNT3A/MMP Molecular Axis. Int J Mol Sci 2022; 23:15900. [PMID: 36555553 PMCID: PMC9786678 DOI: 10.3390/ijms232415900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Head and neck cancer (HNC) is the fifth most common cancer worldwide, and its incidence and death rates have been consistently high throughout the past decades. MicroRNAs (miRNAs) have recently gained significant attention because of their role in the regulation of a variety of biological processes via post-transcriptional silencing mechanisms. Previously, we determined a specific profile of miRNAs associated with HNC using a miRNA microarray analysis. Of the 23 miRNAs with highly altered expression in HNC cells, miR-503 was the most significantly downregulated miRNA. In this study, we confirmed that miR-503 acts as a tumor suppressor, as our results showed decreased levels of miR-503 in cancer cells and patients with HNC. We further characterized the role of miR-503 in the malignant functions of HNC. Although there was a minimal effect on cell growth, miR-503 was found to inhibit cellular invasion significantly. Algorithm-based studies identified multiple potential target genes and pathways associated with oncogenic mechanisms. The candidate target gene, WNT3A, was confirmed to be downregulated by miR-503 at both the mRNA and protein levels and validated by a reporter assay. Furthermore, miR-503 modulated multiple invasion-associated genes, including matrix metalloproteinases (MMPs), through the Wnt downstream signaling pathway. Overall, this study demonstrates that miR-503 suppresses HNC malignancy by inhibiting cell invasion through the Wnt signaling pathway via the WNT3A/MMP molecular axis. The modulation of miR-503 may be a novel therapeutic approach to intervene in cancer invasion.
Collapse
Affiliation(s)
- Shang-Ju Tang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kang-Hsing Fan
- Department of Radiation Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shiang-Fu Huang
- Department of Otorhinolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Jan Kang
- Department of Otorhinolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yi-Fang Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yu-Chen Huang
- Department of General Dentistry, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| |
Collapse
|
4
|
Castora FJ, Kerns KA, Pflanzer HK, Hitefield NL, Gershon B, Shugoll J, Shelton M, Coleman RA. Expression Changes in Mitochondrial Genes Affecting Mitochondrial Morphology, Transmembrane Potential, Fragmentation, Amyloidosis, and Neuronal Cell Death Found in Brains of Alzheimer’s Disease Patients. J Alzheimers Dis 2022; 90:119-137. [DOI: 10.3233/jad-220161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurological disease that has both a genetic and non-genetic origin. Mitochondrial dysfunction is a critical component in the pathogenesis of AD as deficits in oxidative capacity and energy production have been reported. Objective: Nuclear-encoded mitochondrial genes were studied in order to understand the effects of mitochondrial expression changes on mitochondrial function in AD brains. These expression data were to be incorporated into a testable mathematical model for AD used to further assess the genes of interest as therapeutic targets for AD. Methods: RT2-PCR arrays were used to assess expression of 84 genes involved in mitochondrial biogenesis in AD brains. A subset of mitochondrial genes of interest was identified after extensive Ingenuity Pathway Analysis (IPA) (Qiagen). Further filtering of this subset of genes of interest was achieved by individual qPCR analyses. Expression values from this group of genes were included in a mathematical model being developed to identify potential therapeutic targets. Results: Nine genes involved in trafficking proteins to mitochondria, morphology of mitochondria, maintenance of mitochondrial transmembrane potential, fragmentation of mitochondria and mitochondrial dysfunction, amyloidosis, and neuronal cell death were identified as significant to the changes seen. These genes include TP53, SOD2, CDKN2A, MFN2, DNM1L, OPA1, FIS1, BNIP3, and GAPDH. Conclusion: Altered mitochondrial gene expression indicates that a subset of nuclear-encoded mitochondrial genes compromise multiple aspects of mitochondrial function in AD brains. A new mathematical modeling system may provide further insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Frank J. Castora
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kimberly A. Kerns
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Haley K. Pflanzer
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Naomi L. Hitefield
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Blake Gershon
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jason Shugoll
- Division of Biochemistry, Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Morgan Shelton
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| | - Randolph A. Coleman
- Department of Chemistry Integrated Science Center, The College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
5
|
Chikhaoui A, Jones M, Režen T, Ben Ahmed M, Naouali C, Komel R, Zghal M, Boubaker S, Abdelhak S, Yacoub-Youssef H. Inflammatory landscape in Xeroderma pigmentosum patients with cutaneous melanoma. Sci Rep 2022; 12:13854. [PMID: 35974070 PMCID: PMC9381529 DOI: 10.1038/s41598-022-17928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a DNA repair disease that predisposes to early skin cancers as cutaneous melanoma. Melanoma microenvironment contains inflammatory mediators, which would be interesting biomarkers for the prognosis or for the identification of novel therapeutic targets. We used a PCR array to evaluate the transcriptional pattern of 84 inflammatory genes in melanoma tumors obtained from XP patients (XP-Mel) and in sporadic melanoma (SP-Mel) compared to healthy skin. Commonly expressed inflammatory genes were further explored via GTEx and GEPIA databases. The differentially expressed inflammatory genes in XP were compared to their expression in skin exposed to UVs, and evaluated on the basis of the overall survival outcomes of patients with melanoma. Monocyte subsets of patients with SP-Mel, XP and healthy donors were also assessed. PCR array data revealed that 34 inflammatory genes were under-expressed in XP-Mel compared to SP-Mel. Differentially expressed genes that were common in XP-Mel and SP-Mel were correlated with the transcriptomic datasets from GEPIA and GTEx and highlighted the implication of KLK1 and IL8 in the tumorigenesis. We showed also that in XP-Mel tumors, there was an overexpression of KLK6 and KLK10 genes, which seems to be associated with a bad survival rate. As for the innate immunity, we observed a decrease of intermediate monocytes in patients with SP-Mel and in XP. We highlight an alteration in the immune response in XP patients. We identified candidate biomarkers involved in the tumorigenesis, and in the survival of patients with melanoma. Intermediate monocyte's in patients at risk could be a prognostic biomarker for melanoma outcome.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Meriem Jones
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Tadeja Režen
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Contrôle Et Immunobiologie de L'infection, LR16IPT02, Institut Pasteur de Tunis Université de Tunis El Manar I, 2092, Tunis, Tunisia
| | - Chokri Naouali
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Radovan Komel
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips and Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Mohamed Zghal
- Département de Dermatologie, Hôpital Charles Nicolle de Tunis, Tunis, Tunisia
| | - Samir Boubaker
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.,Université Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale Et Oncogénétique (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia. .,Université Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|