1
|
Um‐e‐Kalsoom, Wang S, Qu J, Liu L. Innovative optical imaging strategies for monitoring immunotherapy in the tumor microenvironments. Cancer Med 2024; 13:e70155. [PMID: 39387259 PMCID: PMC11465031 DOI: 10.1002/cam4.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a critical role in cancer progression and response to immunotherapy. Immunotherapy targeting the immune system has emerged as a promising treatment modality, but challenges in understanding the TME limit its efficacy. Optical imaging strategies offer noninvasive, real-time insights into the interactions between immune cells and the TME. OBJECTIVE This review assesses the progress of optical imaging technologies in monitoring immunotherapy within the TME and explores their potential applications in clinical trials and personalized cancer treatment. METHODS This is a comprehensive literature review based on the advances in optical imaging modalities including fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI). These modalities were analyzed for their capacity to provide high-resolution, real-time imaging of immune cell dynamics, tumor vasculature, and other critical components of the TME. RESULTS Optical imaging techniques have shown significant potential in tracking immune cell infiltration, assessing immune checkpoint inhibitors, and visualizing drug delivery within the TME. Technologies like FLI and BLI are pivotal in tracking immune responses in preclinical models, while PAI provides functional imaging with deeper tissue penetration. The integration of these modalities with immunotherapy holds promise for improving treatment monitoring and outcomes. CONCLUSION Optical imaging is a powerful tool for understanding the complexities of the TME and optimizing immunotherapy. Further advancements in imaging technologies, combined with nanomaterial-based approaches, could pave the way for enhanced diagnostic accuracy and therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Um‐e‐Kalsoom
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
2
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang Y, Wu J, Zhao C, Zhang S, Zhu J. Recent Advancement of PD-L1 Detection Technologies and Clinical Applications in the Era of Precision Cancer Therapy. J Cancer 2023; 14:850-873. [PMID: 37056391 PMCID: PMC10088895 DOI: 10.7150/jca.81899] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Programmed death-1 is a protein found on the surface of immune cells that can interact with its ligand, programmed death-ligand 1 (PD-L1), which is expressed on the plasma membrane, the surface of secreted cellular exosomes, in cell nuclei, or as a circulating soluble protein. This interaction can lead to immune escape in cancer patients. In clinical settings, PD-L1 plays an important role in tumor disease diagnosis, determining therapeutic effectiveness, and predicting patient prognosis. PD-L1 inhibitors are also essential components of tumor immunotherapy. Thus, the detection of PD-L1 levels is crucial, especially in the era of precision cancer therapy. In recent years, innovations have been made in traditional immunoassay methods and the development of new immunoassays for PD-L1 detection. This review aims to summarize recent research progress in tumor PD-L1 detection technology and highlight the clinical applications of PD-L1.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Juanjuan Wu
- Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, 256600, China
| | - Chaobin Zhao
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Shuyuan Zhang
- Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Jianbo Zhu
- Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, 256600, China
- ✉ Corresponding author: Pro. Jianbo Zhu, Binzhou People's Hospital Affiliated to Shandong First Medical University, 515 Yellow River Seven Road, Binzhou, Shandong, 256600, China; ,
| |
Collapse
|
4
|
Ferroptosis-Related Genes Are Potential Therapeutic Targets and the Model of These Genes Influences Overall Survival of NSCLC Patients. Cells 2022; 11:cells11142207. [PMID: 35883650 PMCID: PMC9319237 DOI: 10.3390/cells11142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSCC) are two of the most common subtypes of non-small cell lung cancer (NSCLC), with high mortality rates and rising incidence worldwide. Ferroptosis is a mode of programmed cell death caused by lipid peroxidation, the accumulation of reactive oxygen species, and is dependent on iron. The recent discovery of ferroptosis has provided new insights into tumor development, and the clinical relevance of ferroptosis for tumor therapy is being increasingly appreciated. However, its role in NSCLC remains to be explored. Methods: The clinical and molecular data for 1727 LUAD and LUSCC patients and 73 control individuals were obtained from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Gene expression profiles, copy number variations and somatic mutations of 57 ferroptosis-related genes in 1727 tumor samples from the four datasets were used in a univariate Cox analysis and consensus clustering analysis. The biological signatures of each pattern were identified. A ferroptosis score was generated by combining the univariate Cox regression analysis and random forest algorithm followed by principal component analysis (PCA) and further investigated for its predictive and therapeutic value in LUAD and LUSCC. Results: The expression of 57 ferroptosis-related genes in NSCLC patients differed significantly from that of normal subjects. Based on unsupervised clustering of ferroptosis-related genes, we divided all patients into three ferroptosis expression pattern groups, which showed differences in ferroptosis-associated gene expression patterns, immune cell infiltration levels, prognostic characteristics and enriched pathways. Using the differentially expressed genes in the three ferroptosis expression patterns, a set of 17 ferroptosis-related gene prognostic models was established, which clustered all patients in the cohort into a low score group and a high score group, with marked differences in prognosis (p < 0.001). The high ferroptosis score was significantly associated with positive response to radiotherapy (p < 0.001), high T stage (p < 0.001), high N stage (p < 0.001) and high-grade tumor (p < 0.001) characteristics. Conclusions: The 17 ferroptosis-associated genes show great potential for stratifying LUAD and LUSCC patients into high and low risk groups. Interestingly, a high ferroptosis score in LUAD patients was associated with a good prognosis, whereas a similar high ferroptosis score in LUSCC patients was associated with a poor prognosis. Familiarity with the mechanisms underlying ferroptosis and its implications for the treatment of NSCLC, as well as its effect on OS and PFS, may provide guidance and insights in developing new therapeutic targets for NSCLC.
Collapse
|
5
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|
6
|
Kramer CS, Dimitrakopoulou-Strauss A. Immuno-Imaging (PET/SPECT)-Quo Vadis? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103354. [PMID: 35630835 PMCID: PMC9147562 DOI: 10.3390/molecules27103354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
The use of immunotherapy has revolutionized the treatment regimen of certain cancer types, but response assessment has become a difficult task with conventional methods such as CT/MRT or FDG PET-CT and the classical response criteria such as RECIST or PERCIST which have been developed for chemotherapeutic treatment. Plenty of new tracers have been published to improve the assessment of treatment response and to stratify the patient population. We gathered the information on published tracers (in total, 106 individual SPECT/PET tracers were identified) and performed a descriptor-based analysis; in this way, we classify the tracers with regard to target choice, developability (probability to progress from preclinical stage into the clinic), translatability (probability to be widely applied in the 'real world'), and (assumed) diagnostic quality. In our analysis, we show that most tracers are targeting PD-L1, PD-1, CTLA-4, and CD8 receptors by using antibodies or their fragments. Another finding is that plenty of tracers possess only minor iterations regarding chelators and nuclides instead of approaching the problem in a new innovative way. Based on the data, we suggest an orthogonal approach by targeting intracellular targets with PET-activatable small molecules that are currently underrepresented.
Collapse
Affiliation(s)
- Carsten S. Kramer
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, D-65191 Wiesbaden, Germany
- Correspondence:
| | | |
Collapse
|
7
|
Li X, Wang R, Zhang Y, Han S, Gan Y, Liang Q, Ma X, Rong P, Wang W, Li W. Molecular imaging of tumor-associated macrophages in cancer immunotherapy. Ther Adv Med Oncol 2022; 14:17588359221076194. [PMID: 35251314 PMCID: PMC8891912 DOI: 10.1177/17588359221076194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs), the most abundant inflammatory cell group in the tumor microenvironment, play an essential role in tumor immune regulation. The infiltration degree of TAMs in the tumor microenvironment is closely related to tumor growth and metastasis, and TAMs have become a promising target in tumor immunotherapy. Molecular imaging is a new interdisciplinary subject that combines medical imaging technology with molecular biology, nuclear medicine, radiation medicine, and computer science. The latest progress in molecular imaging allows the biological processes of cells to be visualized in vivo, which makes it possible to better understand the density and distribution of macrophages in the tumor microenvironment. This review mainly discusses the application of targeting TAM in tumor immunotherapy and the imaging characteristics and progress of targeting TAM molecular probes using various imaging techniques.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ruike Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yangnan Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, People’s Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|