1
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Cui S, Chen Y, Guo Y, Wang X, Chen D. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS One 2023; 18:e0281536. [PMID: 36749775 PMCID: PMC9904474 DOI: 10.1371/journal.pone.0281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The general mechanism for microRNAs to play biological function is through their inhibition on the expression of their target genes. In cancer, microRNAs may accelerate cell senescence, block angiogenesis, decrease energy supplies, repress tumor cell cycle and promote apoptosis to function as the tumor repressors. On the other hand, microRNAs can modulate tumor suppressor molecules to activate oncogene relevant signaling pathway to initiate tumorigenesis and promote tumor progression. By targeting different genes, miR-22 can function as either a tumor suppressor or a tumor promoter in different types of cancer. In liver cancer, miR-22 mainly functions as a tumor suppressor via its regulation on different genes. In this study, we demonstrated that miR-22 indirectly regulates SPRY2 by inhibiting CBL, an E3 ligase for SPRY2 that has been confirmed. As one of the modulators of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) signaling pathway, SPRY2 plays important roles in many developmental and physiological processes, and its deregulation has been reported in different types of cancer and shown to affect cancer development, progression, and metastasis. By inhibiting the expression of CBL, which stabilizes SPRY2, miR-22 indirectly upregulates SPRY2, thereby suppressing the epithelial-mesenchymal transition (EMT), cell migration, and invasion and decreasing the expression of liver cancer stem cell (CSC) marker genes. The inhibitory effects of miR-22 on EMT, cell migration, and invasion can be blocked by the knockdown of SPRY2 expression in miR-22 overexpressing cells. Additionally, we demonstrated that miR-22 expression inhibits the ERK signaling pathway and that this effect is due to its upregulation of SPRY2. Overall, our study revealed a novel miR-22-3p/CBL/SPRY2/ERK axis that plays an important role in EMT, cell migration, and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- * E-mail:
| |
Collapse
|
3
|
Shah D, Joshi M, Patel BM. Role of NIMA‐related kinase 2 in lung cancer: Mechanisms and therapeutic prospects. Fundam Clin Pharmacol 2022; 36:766-776. [DOI: 10.1111/fcp.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Darshak Shah
- Institute of Pharmacy Nirma University Ahmedabad India
| | - Mit Joshi
- Institute of Pharmacy Nirma University Ahmedabad India
| | | |
Collapse
|
4
|
Wang L, Wang H, Yang C, Wu Y, Lei G, Yu Y, Gao Y, Du J, Tong X, Zhou F, Li Y, Wang Y. Investigating CENPW as a Novel Biomarker Correlated With the Development and Poor Prognosis of Breast Carcinoma. Front Genet 2022; 13:900111. [PMID: 35783290 PMCID: PMC9247308 DOI: 10.3389/fgene.2022.900111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Breast invasive carcinoma (BRCA) is a carcinoma with a fairly high incidence, and the therapeutic schedules are generally surgery and chemotherapy. However, chemotherapeutic drugs tend to produce serious toxic side effects, which lead to the cessation of treatment. Therefore, it is imperative to develop treatment strategies that are more effective and have fewer side effects at the genetic level. Centromeric protein W (CENPW) is an oncogene that plays an important part in nucleosome assembly. To date, no studies have reported the prognostic significance of CENPW in breast carcinoma. In this study, we verified that CENPW expression is up-regulated in breast carcinoma and positively associated with the level of immune cell infiltration. The clinicopathological characteristics further suggest that CENPW expression is correlated with a worse prognosis of breast carcinoma. Interestingly, the CENPW mutation contributes to the poor prognosis. Next, we discovered that the genes interacting with CENPW are mainly concentrated in the cell cycle pathway, and CENPW is co-expressed with CDCA7, which is also highly expressed in breast carcinoma and leads to a worse prognosis. Our subsequent studies verified that knockdown of CENPW significantly inhibits the proliferation and migration of breast carcinoma cells and promotes their apoptosis rate. Notably, inhibition of CEMPW sensitizes breast cancer cells to chemotherapeutic drugs that have been found to induce cell cycle arrest. In summary, these results provide extensive data and experimental evidence that CENPW can serve as a novel predictor of breast cancer and may act as a prospective therapeutic target.
Collapse
Affiliation(s)
- Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Hairui Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Feifei Zhou
- Traditional Chinese Medicine Department, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| |
Collapse
|
5
|
Yawut N, Kaowinn S, Cho IR, Budluang P, Kim S, Kim S, Youn SE, Koh SS, Chung YH. Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes. BMB Rep 2022. [PMID: 35000669 PMCID: PMC8891619 DOI: 10.5483/bmbrep.2022.55.2.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Ex-pression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound heal-ing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.
Collapse
Affiliation(s)
- Natpaphan Yawut
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology, Ladkrabang Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Il-Rae Cho
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Phatcharaporn Budluang
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Seonghye Kim
- BK21 plus, Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Suhkmann Kim
- BK21 plus, Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - So Eun Youn
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Sang Seok Koh
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Young-Hwa Chung
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| |
Collapse
|
6
|
Yawut N, Kaowinn S, Cho IR, Budluang P, Kim S, Kim S, Youn SE, Koh SS, Chung YH. Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes. BMB Rep 2022; 55:98-103. [PMID: 35000669 PMCID: PMC8891619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2023] Open
Abstract
Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator. [BMB Reports 2022;55(2): 98-103].
Collapse
Affiliation(s)
- Natpaphan Yawut
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Sirichat Kaowinn
- Department of General Science and Liberal Arts, King Mongkut’s Institute of Technology, Ladkrabang Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Il-Rae Cho
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Phatcharaporn Budluang
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| | - Seonghye Kim
- BK21 plus, Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - Suhkmann Kim
- BK21 plus, Department of Chemistry, Pusan National University, Busan 46241, Korea
| | - So Eun Youn
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Sang Seok Koh
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Young-Hwa Chung
- BK21 plus, Department of Cogno-Mechatronics Engineering, Optomechatronics Research Center, Busan 46241, Korea
| |
Collapse
|
7
|
Elevated Expression of JMJD5 Protein Due to Decreased miR-3656 Levels Contributes to Cancer Stem Cell-like Phenotypes under Overexpression of Cancer Upregulated Gene 2. Biomolecules 2022; 12:biom12010122. [PMID: 35053270 PMCID: PMC8774111 DOI: 10.3390/biom12010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Overexpression of cancer upregulated gene (CUG) 2 induces cancer stem cell-like phenotypes, such as enhanced epithelial-mesenchymal transition, sphere formation, and doxorubicin resistance. However, the precise mechanism of CUG2-induced oncogenesis remains unknown. We evaluated the effects of overexpression of CUG2 on microRNA levels using a microRNA microarray. Levels of miR-3656 were decreased when CUG2 was overexpressed; on the basis of this result, we further examined the target proteins of this microRNA. We focused on Jumonji C domain-containing protein 5 (JMJD5), as it has not been previously reported to be targeted by miR-3656. When CUG2 was overexpressed, JMJD5 expression was upregulated compared to that in control cells. A 3′ untranslated region (UTR) assay revealed that an miR-3656 mimic targeted the JMJD5 3′UTR, but the miR-3656 mimic failed to target a mutant JMJD5 3′UTR, indicating that miR-3656 targets the JMJD5 transcript. Administration of the miR-3656 mimic decreased the protein levels of JMD5 according to Western blotting. Additionally, the miR-3656 mimic decreased CUG2-induced cell migration, evasion, and sphere formation and sensitized the cells to doxorubicin. Suppression of JMJD5, with its small interfering RNA, impeded CUG2-induced cancer stem cell-like phenotypes. Thus, overexpression of CUG2 decreases miR-3656 levels, leading to upregulation of JMJD5, eventually contributing to cancer stem cell-like phenotypes.
Collapse
|