1
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Bai Z, Zhou D, Tao K, Lin F, Wang H, Sun H, Liu R, Li Z. The Role of MicroRNA-206 in the Regulation of Diabetic Wound Healing via Hypoxia-Inducible Factor 1-Alpha. Biochem Genet 2024:10.1007/s10528-024-10759-9. [PMID: 38446322 DOI: 10.1007/s10528-024-10759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Successful wound healing in diabetic patients is hindered by dysregulated miRNA expression. This study aimed to investigate the abnormal expression of miRNAs in diabetic wound healing and the potential therapeutic role of modulating the miR-206/HIF-1α pathway. MicroRNA assays were used to identify differentially expressed miRNAs in diabetic wound sites and adjacent areas. In vitro models and a rat diabetic model were established to evaluate the effects of miR-206 on HIF-1α regulation and wound healing. The study revealed differential expression of miR-206 in diabetic wound tissues, its interaction with HIF-1α, and the inhibitory effect of miR-206 on cell growth under high glucose conditions. Modulating the miR-206/HIF-1α pathway using miR-206 antagomir promoted HIF-1α, CD34, and VEGF expression, ultimately enhancing diabetic wound healing.
Collapse
Affiliation(s)
- Zeming Bai
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Dapeng Zhou
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Kai Tao
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China.
| | - Feng Lin
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Hongyi Wang
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Haiwei Sun
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Ruidi Liu
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| | - Zhe Li
- Burn and Plastic Surgery Department, General Hospital of Northern Theater Command, Shenyang, 110000, China
| |
Collapse
|
3
|
Tian Q, Mu Q, Liu S, Huang K, Tang Y, Zhang P, Zhao J, Shu C. m6A-modified circASXL1 promotes proliferation and migration of ovarian cancer through the miR-320d/RACGAP1 axis. Carcinogenesis 2023; 44:859-870. [PMID: 37738681 DOI: 10.1093/carcin/bgad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignant tumors in women. Circular RNAs (circRNAs) can potentially regulate the development of OC. Therefore, this study investigated the role of circASXL1 in OC progression. Cell functions were assessed by MTT, colony formation, wound healing, and transwell assays. RIP and dual luciferase reporter assays confirmed the relationship between miR-320d and circASXL1 or RACGAP1. MeRIP was utilized to detect m6A levels. Xenograft tumor was established for in vivo experiments. CircASXL1 and RACGAP1 levels were increased in OC tissues and cells, whereas miR-320d expression was decreased. Upregulation of circASXL1 was associated with poor prognosis in OC patients. CircASXL1 silencing suppressed OC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, METTL3/IGF2BP1-mediated m6A modification maintained circASXL1 stability and upregulated its expression. CircASXL1 was a ceRNA that sequestrated miR-320d from RACGAP1, leading to increased RACGAP1 expression. CircASXL1 promoted OC cell proliferation, migration and invasion via the miR-320d/RACGAP1 axis. Therefore, m6A-modified circASXL1 acts as an oncogene in OC by targeting miR-320d and activating RACGAP1/PI3K/Akt pathway, which provides novel promising biomarkers for OC diagnosis.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| | - Qingling Mu
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Qingdao 266000, Shandong Province, P.R. China
| | - Shuang Liu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Kui Huang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Yi Tang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
| | - Chuqiang Shu
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital (Reproductive Medicine Institute of Hunan Province), Changsha 410008, Hunan Province, P.R. China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
4
|
Zhang Q, Ding F, Zhang C, Han X, Cheng H. Circ_0001715 Functions as a miR-1249-3p Sponge to Accelerate the Progression of Non-small Cell Lung Cancer via Upregulating the Level of FGF5. Biochem Genet 2023; 61:1807-1826. [PMID: 36808266 DOI: 10.1007/s10528-023-10344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Circular RNAs (circRNAs) have been widely involved in the malignant development of human cancers. Circ_0001715 was aberrantly upregulated in non-small cell lung cancer (NSCLC). However, circ_0001715 function has never been researched. This study was designed to investigate the role and mechanism of circ_0001715 in NSCLC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the levels of circ_0001715, microRNA-1249-3p (miR-1249-3p) and Fibroblast Growth Factor 5 (FGF5). The proliferation detection was conducted using colony formation assay and EdU assay. Cell apoptosis was analyzed via flow cytometry. Wound healing assay and transwell assay were used for determination of migration and invasion, respectively. The protein levels were measured through western blot. Target analysis was carried out via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor model was established in mice for in vivo research. The significant upregulation of circ_0001715 was detected in NSCLC samples and cells. Circ_0001715 knockdown induced the inhibitory effects on proliferation, migration and invasion but the promoting effect on apoptosis of NSCLC cells. Circ_0001715 could interact with miR-1249-3p. The regulatory role of circ_0001715 was achieved by sponging miR-1249-3p. Furthermore, miR-1249-3p targeted FGF5 and miR-1249-3p acted as a cancer inhibitor by targeting FGF5. Moreover, circ_0001715 upregulated the FGF5 level via targeting miR-1249-3p. In vivo assay showed that circ_0001715 promoted the NSCLC progression through the miR-1249-3p/FGF5 axis. The current evidence elucidated that circ_0001715 served as an oncogenic regulator in NSCLC progression by depending on the miR-1249-3p/FGF5 axis.
Collapse
Affiliation(s)
- Quanjin Zhang
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Feng Ding
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Congcong Zhang
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Xu Han
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Hui Cheng
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China.
| |
Collapse
|
5
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Ghafouri-Fard S, Hussen BM, Shoorei H, Abak A, Poornajaf Y, Taheri M, Samadian M. Interactions between non-coding RNAs and HIF-1α in the context of cancer. Eur J Pharmacol 2023; 943:175535. [PMID: 36731723 DOI: 10.1016/j.ejphar.2023.175535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a subunit of the HIF-1 transcription factor which is encoded by the HIF1A gene. This transcription factor is the main modulator of the cell response to hypoxia. Hypoxia-induced up-regulation of HIF-1α is involved in the pathogenesis of cancer. Recently, the interactions of several long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) with HIF-1α have been reported. These ncRNAs regulate the expression of HIF-1α through different mechanisms. The regulatory roles of ncRNAs on HIF-1α are involved in the response of cancer cells to a wide range of anticancer drugs such as sorafenib, cisplatin, propofol, doxorubicin, and paclitaxel. Therefore, identification of the complex network between ncRNAs and HIF-1α not only facilitates the design of novel therapies but also promotes the efficacy of conventional anticancer treatments. This review aims to explain the interactions between these classes of ncRNAs and HIF-1α in the context of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yi Q, Feng J, Liao Y, Sun W. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life 2023; 75:225-237. [PMID: 35594011 DOI: 10.1002/iub.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Lung cancer is one of the high malignancy-related incidence and mortality worldwide, accounting for about 13% of total cancer diagnoses. Currently, the use of anti-cancer agents is still the main therapeutic method for lung cancer. However, cancer cells will gradually show resistance to these drugs with the progress of treatment. And the molecular mechanisms underlying chemotherapy agents resistance remain unclear. circRNAs are newly identified noncoding RNAs molecules with covalently closed circular structures. Previous studies have shown that circRNAs are associated with tumorigenesis and progression of various cancers, including lung cancer. Recently, growing reports have suggested that circRNAs could contribute to drug resistance of lung cancer cell through different mechanisms. Therefore, in this review, we summarized the functions and underlying mechanisms of circRNAs in regulating chemoresistance of lung cancer and discussed their potential applications for diagnosis, prognosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China.,Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Circular RNA circ_0005667 promotes cisplatin resistance of endometrial carcinoma cells by regulating IGF2BP1 through miR-145-5p. Anticancer Drugs 2022:00001813-990000000-00156. [PMID: 36728962 DOI: 10.1097/cad.0000000000001479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Circular RNA (circRNA) plays a significant role in cisplatin (DDP) resistance. The purpose of this study was to explore the role of circ_0005667 in DDP resistance of endometrial carcinoma (EC) cells. METHODS The expression of circular RNA circ_0005667, microRNA-145-5p (miR-145-5p) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in DDP-sensitive and DDP-resistant EC tissues and EC cells was determined by quantitative real-time PCR (qRT-PCR). The expression of apoptosis-related proteins, drug resistance-related proteins and IGF2BP1 proteins were detected by western blot. The half-maximal inhibitory concentration (IC50) of DDP was determined using a cell counting kit-8 (CCK-8) assay. For functional assays, cell proliferation, migration, invasion and cell apoptosis were determined using 5-ethynyl-2'-deoxyuridine (EdU) assay, wound healing assay, transwell assay and flow cytometry assay, respectively. The binding relationship between miR-145-5p and circ_0005667 or IGF2BP1 was verified by dual-luciferase reporter assay. A xenograft experiment was applied to clarify the functional role of circ_0005667 in vivo. RESULTS Levels of circ_0005667 and IGF2BP1 were markedly increased, whereas miR-145-5p was downregulated in DDP-resistant EC tissues and cells. The circ_0005667 deficiency could enhance DDP sensitivity, inhibit cell proliferation, migration and invasion and promote cell apoptosis in DDP-resistant EC cells in vitro. Mechanistically, circ_0005667 modulated IGF2BP1 expression through sponging miR-145-5p. In addition, miR-145-5p depletion attenuated circ_0005667 silencing-induced effects in EC cells. The regulation of miR-145-5p in DDP resistance involved low IGF2BP1 expression. In vivo experiments revealed that circ_0005667 silencing could improve the sensitivity of the tumor to DDP. CONCLUSION Circ_0005667 enhanced DDP resistance in EC by elevating IGF2BP1 through sponging miR-145-5p.
Collapse
|
9
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|
10
|
Lai Q, Li W, Wang H, Xu S, Deng Z. Emerging role of circRNAs in cancer under hypoxia (Review). Oncol Lett 2022; 24:372. [PMID: 36238836 PMCID: PMC9494632 DOI: 10.3892/ol.2022.13492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNA (circRNA), a recently identified type of non-coding RNAs (ncRNAs), forms a covalently closed loop with neither a 5′ cap structure nor a 3′ polyadenylated tail. Due to their lack of free ends, circRNAs are not easily cleaved by RNase R, thus avoiding degradation and being more stable than linear RNAs. Recent studies have suggested that circRNAs play a crucial role in regulating gene expression by acting as microRNAs sponges, RNA binding protein sponges and translational regulators. Currently, circRNAs are hot research topics due to their close association with the development of cancer and other diseases. Hypoxia is the most common microenvironment during tumor growth, and hypoxia-inducible factors have different effects on tumor growth and influence important cancer characteristics, including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune response, invasion and metastasis. The present review aimed to study the biogenesis and mechanisms of gene regulation of circRNAs in hypoxia, to summarize the latest studies on circRNAs as potential diagnostic and prognostic biomarkers in hypoxia, and to understand the role of circRNAs in the process of tumor drug resistance under hypoxia.
Collapse
Affiliation(s)
- Qun Lai
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenqiang Li
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan 643000, P.R. China
| | - Hongping Wang
- Department of Neurosurgery, Tangshan Gongren Hospital of Hebei Medical University, Tangshan, Hebei 063000, P.R. China
| | - Siran Xu
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan 643000, P.R. China
| | - Zhiping Deng
- Department of Pulmonary and Critical Care Medicine, First People's Hospital of Zigong, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
11
|
Yang J, Liu Z, Liu B, Sun L. Silencing of circCYP51A1 represses cell progression and glycolysis by regulating miR-490-3p/KLF12 axis in osteosarcoma under hypoxia. J Bone Oncol 2022; 37:100455. [PMID: 36276300 PMCID: PMC9579499 DOI: 10.1016/j.jbo.2022.100455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022] Open
Abstract
CircCYP51A1 was up-regulated in osteosarcoma cells under hypoxia. CircCYP51A1 mediated KLF12 expression through sponging miR-490-3p. Under hypoxia condition, circCYP51A1 knockdown inhibited cell progression and glycolysis by regulating miR-490-3p/ KLF12 axis.
Background Methods Results Conclusion
Collapse
|
12
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Wang S, Qian L, Cao T, Xu L, Jin Y, Hu H, Fu Q, Li Q, Wang Y, Wang J, Xia Y, Huang X. Advances in the Study of CircRNAs in Tumor Drug Resistance. Front Oncol 2022; 12:868363. [PMID: 35615158 PMCID: PMC9125088 DOI: 10.3389/fonc.2022.868363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that circRNAs can affect tumor DNA damage and repair, apoptosis, proliferation, and invasion and influence the transport of intratumor substances by acting as miRNA sponges and transcriptional regulators and binding to proteins in a variety of ways. However, research on the role of circRNAs in cancer radiotherapy and chemoresistance is still in its early stages. Chemotherapy is a common approach to oncology treatment, but the development of tumor resistance limits the overall clinical efficacy of chemotherapy for cancer patients. The current study suggests that circRNAs have a facilitative or inhibitory effect on the development of resistance to conventional chemotherapy in a variety of tumors, suggesting that circRNAs may serve as a new direction for the study of antitumor drug resistance. In this review, we will briefly discuss the biological features of circRNAs and summarize the recent progression of the involvement of circRNAs in the development and pathogenesis of cancer chemoresistance.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Long Qian
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Tingting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Li Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yan Jin
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Hao Hu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qingsheng Fu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Qian Li
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Ye Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Jiawei Wang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Yabin Xia
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Xiaoxu Huang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
- *Correspondence: Xiaoxu Huang,
| |
Collapse
|
14
|
Xu L, Huang X, Lou Y, Xie W, Zhao H. Regulation of apoptosis, autophagy and ferroptosis by non‑coding RNAs in metastatic non‑small cell lung cancer (Review). Exp Ther Med 2022; 23:352. [PMID: 35493430 PMCID: PMC9019694 DOI: 10.3892/etm.2022.11279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), a common type of cancer worldwide, is normally associated with a poor prognosis. It is difficult to treat successfully as it often metastasizes into brain or bone. Methods to facilitate the induction of effective programmed cell death (PCD) in NSCLC cells to reverse drug resistance, or to inhibit the invasion and migration of NSCLC cells, are currently under investigation. The present study summarized the regulatory functions of PCD, including apoptosis, autophagy and ferroptosis, in the context of NSCLC metastasis. It further summarized how regulatory agents, including long non-coding RNAs, circular RNAs and microRNAs, regulate PCD during the metastasis of NSCLC and characterized new potential diagnostic biomarkers of NSCLC metastasis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Xin Huang
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Yan Lou
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, P.R. China
| | - Wei Xie
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Hangyu Zhao
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| |
Collapse
|
15
|
Mirzaei S, Gholami MH, Hushmandi K, Hashemi F, Zabolian A, Canadas I, Zarrabi A, Nabavi N, Aref AR, Crea F, Wang Y, Ashrafizadeh M, Kumar AP. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J Hematol Oncol 2022; 15:18. [PMID: 35236381 PMCID: PMC8892735 DOI: 10.1186/s13045-022-01235-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large family of RNA molecules with no capability in encoding proteins. However, they participate in developmental and biological processes and their abnormal expression affects cancer progression. These RNA molecules can function as upstream mediators of different signaling pathways and enhancer of zeste homolog 2 (EZH2) is among them. Briefly, EZH2 belongs to PRCs family and can exert functional roles in cells due to its methyltransferase activity. EZH2 affects gene expression via inducing H3K27me3. In the present review, our aim is to provide a mechanistic discussion of ncRNAs role in regulating EZH2 expression in different cancers. MiRNAs can dually induce/inhibit EZH2 in cancer cells to affect downstream targets such as Wnt, STAT3 and EMT. Furthermore, miRNAs can regulate therapy response of cancer cells via affecting EZH2 signaling. It is noteworthy that EZH2 can reduce miRNA expression by binding to promoter and exerting its methyltransferase activity. Small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) are synthetic, short ncRNAs capable of reducing EZH2 expression and suppressing cancer progression. LncRNAs mainly regulate EZH2 expression via targeting miRNAs. Furthermore, lncRNAs induce EZH2 by modulating miRNA expression. Circular RNAs (CircRNAs), like lncRNAs, affect EZH2 expression via targeting miRNAs. These areas are discussed in the present review with a focus on molecular pathways leading to clinical translation.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, 1417466191, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Gorgan, Golestan, Iran
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Zhang L, Peng H, Xu Z, Yang Q, Wang Y, Wang H, Bu L. Circular RNA SOX13 promotes malignant behavior and cisplatin resistance in non-small cell lung cancer through targeting microRNA-3194-3p/microtubule-associated protein RP/EB family member 1. Bioengineered 2022; 13:1814-1827. [PMID: 34709968 PMCID: PMC8805859 DOI: 10.1080/21655979.2021.1997223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Circular RNA (circRNA) presents an essential regulatory role in affecting the occurrence and acquired resistance in non-small cell lung cancer (NSCLC), but how circSOX13 impacts NSCLC is unclear. In this work it was found that compared with adjacent normal tissues, circSOX13 and the microtubule-associated protein RP/EB family member 1 (MAPRE1) were signally up-regulated in NSCLC while miR-3194-3p was signally lowered. Pulmonary function tests (PETs) revealed that knocking down circSOX13 or overexpressing miR-3194-3p inhibited NSCLC proliferation, invasion and migration but promoted its apoptosis. The promoting effect of overexpressing circSOX13 on NSCLC was reversed via knocking down MAPRE1. Additionally, knocking down circSOX13 reduced cisplatin resistance in NSCLC. Furthermore, circSOX13 mediated MAPRE1 expression via competitively binding miR-3194-3p to exert its tumorigenic impact. To conclude, this work clarified the carcinogenic impact of circSOX13-miR-3194-3p-MAPRE1 axis on NSCLC and DDP resistance. CircSOX13 can be a potential diagnostic marker and therapeutic target for NSCLC, thus providing a new insight for clinically reversing its acquired resistance.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Qiuju Yang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yang Wang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Han Wang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Liang Bu
- Department of Thoracic Surgery, Kunming University of Science and Technology, School of Medicine, Kunming City, Yunnan Province, China
| |
Collapse
|
17
|
Wang Q, Yan C, Zhang P, Li G, Zhu R, Wang H, Wu L, Xu G. Microarray Identifies a Key Carcinogenic Circular RNA 0008594 That Is Related to Non-Small-Cell Lung Cancer Development and Lymph Node Metastasis and Promotes NSCLC Progression by Regulating the miR-760-Mediated PI3K/AKT and MEK/ERK Pathways. Front Oncol 2021; 11:757541. [PMID: 34858831 PMCID: PMC8632265 DOI: 10.3389/fonc.2021.757541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to explore the circular RNA (circRNA/circ) profile engaged in non-small cell lung cancer (NSCLC) development and metastasis and to investigate potentially key carcinogenic circRNAs related to NSCLC. Methods CircRNA profiles between 10 NSCLC tissues and 10 adjacent tissues and between five NSCLC tissues with lymph node metastasis (LNM) and five NSCLC tissues without LNM were detected by Arraystar Human circRNA Array followed by bioinformatics. Circ_0008594 knockdown, circ_0004293 overexpression, and circ_0003832 overexpression plasmids were transfected into H23 and H460 cells to sort potential oncogenic circRNA. Then circ_0008594 overexpression and knockdown plasmids were transfected, followed by that circ_0008594 knockdown plus miR-760 knockdown plasmids were transfected into these cells. Cell proliferation, apoptosis, invasion, stemness, and pathways were detected. In addition, xenograft mice models were constructed via injecting H23 cells with circ_0008594 overexpression or knockdown to validate the findings. Results A total of 455 dysregulated circRNAs in NSCLC tissues versus adjacent tissues and 353 dysregulated circRNAs in NSCLC tissues with LNM versus those without LNM were discovered. Via cross-analysis, 19 accordant circRNAs were uncovered, among which three candidate circRNAs (circ_0008594, circ_0004293, circ_0003832) were chosen for functional experiments, during which it was observed that circ_0008549 affected H23 and H460 cell proliferation and apoptosis more obviously than circ_0004293 and circ_0003832. Subsequent experiments showed that circ_0008594 promoted H23 and H460 cell proliferation and invasion but affected stemness less and negatively regulated miR-760 via direct binding. Furthermore, miR-760 attenuated the effect of circ_0008549 on regulating H23 and H460 cell functions and the PI3K/AKT and MEK/ERK pathways. In vivo experiments further confirmed that circ_0008549 increased tumor volume, epithelial-mesenchymal transition, and the PI3K/AKT and MEK/ERK pathways while reducing tumor apoptosis and miR-760 NSCLC xenograft models. Conclusion Our study identifies several valuable circRNAs related to NSCLC development and LNM. Furthermore, as a key functional circRNA, circ_0008594 was observed to promote NSCLC progression by regulating the miR-760-mediated PI3K/AKT and MEK/ERK pathways.
Collapse
Affiliation(s)
- Qiushi Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunhua Yan
- Department of Respiratory, Longgang District People's Hospital of Shenzhen, Shenzhen, China.,Department of Respiratory, Longgang District The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Pengfei Zhang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruidong Zhu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanbing Wang
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Libo Wu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xu
- The Second Department of General Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Luo L, Zhang LL, Tao W, Xia TL, Li LY. Prediction of potential prognostic biomarkers in metastatic prostate cancer based on a circular RNA-mediated competing endogenous RNA regulatory network. PLoS One 2021; 16:e0260983. [PMID: 34860853 PMCID: PMC8641895 DOI: 10.1371/journal.pone.0260983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Recently, studies on competing endogenous RNA (ceRNA) networks have become prevalent, and circular RNAs (circRNAs) have crucial implications for the development and progression of carcinoma. However, studies relevant to metastatic prostate cancer (mPCa) are scant. This study aims to discover potential ceRNAs that may be related to the prognosis of mPCa. RNA-Seq data were obtained from the MiOncoCirc database and Gene Expression Omnibus (GEO). Differential expression patterns of RNAs were examined using R packages. Circular RNA Interactome, miRTarBase, miRDB and TargetScan were applied to predict the corresponding relation between circRNAs, miRNAs and mRNAs. The Gene Ontology (GO) annotations were performed to present related GO terms, and Gene Set Enrichment Analysis (GSEA) tools were applied for pathway annotations. Moreover, survival analysis was conducted for the hub genes. We found 820 circRNAs, 81 miRNAs and 179 mRNAs that were distinguishingly expressed between primary prostate cancer (PCa) and mPCa samples. A ceRNA network including 45 circRNAs, 24 miRNAs and 56 mRNAs was constructed. In addition, the protein–protein interaction (PPI) network was built, and 10 hub genes were selected by using the CytoHubba application. Among the 10 hub genes, survival analysis showed that ITGA1, LMOD1, MYH11, MYLK, SORBS1 and TGFBR3 were significantly connected with disease-free survival (DFS). The circRNA-mediated ceRNA network provides potential prognostic biomarkers for metastatic prostate cancer.
Collapse
Affiliation(s)
- Liang Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Foshan First Municipal People’s Hospital, Foshan, China
| | - Lei-Lei Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Urology, Foshan First Municipal People’s Hospital, Foshan, China
| | - Wen Tao
- Department of Urology, Foshan First Municipal People’s Hospital, Foshan, China
| | - Tao-Lin Xia
- Department of Urology, Foshan First Municipal People’s Hospital, Foshan, China
| | - Liao-Yuan Li
- Department of Urology, Foshan First Municipal People’s Hospital, Foshan, China
- * E-mail:
| |
Collapse
|