1
|
Wu S, Li C, Zhou H, Yang Y, Liang N, Fu Y, Luo Q, Zhan Y. The regulatory mechanism of m6A modification in gastric cancer. Discov Oncol 2024; 15:283. [PMID: 39009956 PMCID: PMC11250764 DOI: 10.1007/s12672-024-00994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/23/2024] [Indexed: 07/17/2024] Open
Abstract
To the best of our knowledge, N6-Methyladenosine (m6A) exerts a significant role in the occurrence and development of various tumors. Gastric cancer (GC), originating from the mucosal epithelium in the digestive tract, is the fifth most common cancer and the third most common cause of cancer death around the world. Therefore, it is urgent to explore the specific mechanism of tumorigenesis of GC. As we all know, m6A modification as the most common RNA modification, is involved in the modification of mRNA and ncRNA at the post-transcriptional level, which played a regulatory role in various biological processes. As identified by numerous studies, the m6A modification are able to influence the proliferation, apoptosis, migration, and invasion of GC. What's more, m6A modification are associated with EMT, drug resistance, and aerobic glycolysis in GC. m6A related-ncRNAs may be a valuable biomarker used by the prediction of GC diagnosis in the future. This review summarizes the role of m6A modification in the mechanism of gastric cancer, with the aim of identifying biological progress.
Collapse
Affiliation(s)
- Si Wu
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| | - Chunming Li
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China.
| | - Hanghao Zhou
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| | - Ying Yang
- Department of Dermatology, The Second Affiliated Hospital of Zunyi Medical University, Intersection of Xinpu Street and Xinlong Street, Xinpu New District, Zunyi, 563000, Guizhou, China
| | - Na Liang
- Department of Histology and Embryology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - Yue Fu
- Department of Histology and Embryology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - Qingqing Luo
- Department of Physiology, Zunyi Medical University, No. 6 Xuefu West Street, Xinpu New District, Zunyi, Guizhou, China
| | - YaLi Zhan
- Department of Pathology, The First Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Street, Huichuan District, Zunyi, 563000, Guizhou, China
| |
Collapse
|
2
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
Liu J, Wang Y, Sheng Y, Cai L, Wang Y. Construction and validation of m6A-related diagnostic model for psoriasis. PeerJ 2024; 12:e17027. [PMID: 38436011 PMCID: PMC10909359 DOI: 10.7717/peerj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory disease. N6-methyladenosine (m6A) is involved in numerous biological processes in both normal and diseased states. Herein, we aimed to explore the potential role of m6A regulators in the diagnosis of psoriasis and predict molecular mechanisms by which m6A regulators impact psoriasis. Methods GSE30999 (170 human skin tissue samples) and GSE13355 (180 human skin tissue samples) were downloaded as the training analysis dataset and validation dataset respectively. M6A-related genes were obtained from the literature and their expression levels in GSE30999 samples were measured to identify M6A-related DEGs between psoriasis lesions (LS) and non-lesional lesions (NL). We identified m6A-related DEGs using differential expression analysis and assessed their interactions through correlation analysis and network construction. A logistic regression analysis followed by LASSO optimization was employed to select m6A-related DEGs for the construction of a diagnostic model. The performance of the model was validated using support vector machine (SVM) methodology with sigmoid kernel function and extensive cross-validation. Additionally, the correlation between m6A-related DEGs and immune cell infiltration was analyzed, as well as the association of these DEGs with psoriasis subtypes. Functional analysis of the m6A-related DEGs included the construction of regulatory networks involving miRNAs, transcription factors (TFs), and small-molecule drugs. The m6A modification patterns were also explored by examining the gene expression differences between psoriasis subtypes and their enriched biological pathways. Finally, the expression of significant m6A regulators involved in the diagnostic model was examined by RT-qPCR. Results In this study, ten optimal m6A-related DEGs were identified, including FTO, IGF2BP2, METTL3, YTHDC1, ZC3H13, HNRNPC, IGF2BP3, LRPPRC, YTHDC2, and HNRNPA2B1. A diagnostic model based on these m6A-related DEGs was constructed, demonstrating high diagnostic accuracy with an area under the curve (AUC) in GSE30999 and GSE13355 of 0.974 and 0.730, respectively. Meanwhile, the expression level of m6A regulators verified by RT-qPCR was consistent with the results in GSE30999. The infiltration of activated mast cells and NK cells was significantly associated with all ten m6A-related DEGs in psoriasis. Among them, YTHDC1, HNRNPC, and FTO were targeted by most miRNAs and were regulated by nine related TFs. Therefore, patients may benefit from dorsomorphin and cyclosporine therapy. Between the two subgroups, 1,592 DEGs were identified, including LRPPRC and METTL3. These DEGs were predicted to be involved in neutrophil activation, cytokine-cytokine receptor interactions, and chemokine signaling pathways. Conclusions A diagnostic model based on ten m6A-related DEGs in patients with psoriasis was constructed, which may provide early diagnostic biomarkers and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Sheng
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Ji J, Liu S, Liang Y, Zheng G. Comprehensive analysis of m6A regulators and relationship with tumor microenvironment, immunotherapy strategies in colorectal adenocarcinoma. BMC Genom Data 2023; 24:44. [PMID: 37568073 PMCID: PMC10422724 DOI: 10.1186/s12863-023-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The N6-methyladenosine (m6A) RNA modification is the most prevalent and abundant type found in eukaryotic cells. It plays a crucial role in the initiation and progression of cancers. In this study, we aimed to comprehensively investigate the landscape of m6A regulators and their association with tumor microenvironment (TME), immunotherapeutic strategies in colon adenocarcinoma (COAD). RESULTS The differential expression, mutation, CNV frequency and prognostic value of 27 m6A regulators were systematically analyzed in COAD. Patients were classified into two clusters based on m6A regulators through consistent clustering analysis, with cluster A showing significant survival benefits. Most of the m6A regulators were negatively correlated with immune cells, except for WTAP, IGF2BP3, FTO, ALKBH5, which showed a positive correlation. We developed an m6A scoring system to calculate the m6Ascore for each patient. Patients with a high-m6Ascore had a better outcome, with the AUC of 0.775. An independent cohort of 416 COAD patients acquired from GSE38832 database was used to validate the prognosis prediction ability of m6Ascore. Moreover, the m6Ascore was negatively correlated with infiltration of anti-tumor immune cells. Additionally, patients with a high-m6Ascore responded better to anti-PD1 and anti-CTLA4 therapies, and those with MSI-H had a higher m6Ascore. Finally, we investigated the value of m6Ascore in predicting the response of patients to 15 commonly used drugs. CONCLUSIONS We comprehensively analyzed m6A regulators in COAD, including RNA expression, CNV changes, mutations and their correlation with TME. Our results showed that the m6A scoring system had significant predictive power for the prognosis of COAD patients, potentially leading to new personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Jian Ji
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Shichao Liu
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Yongyuan Liang
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, People's Republic of China
| | - Guixi Zheng
- Department of Clinical Laboratory, Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
5
|
Chen W, He Q, Liu J, Li N, Xiao K, Chen H. PLAGL2 promotes Snail expression and gastric cancer progression via UCA1/miR-145-5p/YTHDF1 axis. Carcinogenesis 2023; 44:328-340. [PMID: 36999803 DOI: 10.1093/carcin/bgad016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVES Although great progress has made in gastric cancer (GC) in the past years, the overall 5-year survival rate remains to be low for advanced GC patients. A recent study showed that PLAGL2 was increased in GC and enhanced the proliferation and metastasis of GC. Nevertheless, the underlying mechanism still needs to be investigated. METHODS Gene and protein expressions were assessed using RT-qPCR and western blot. The migration, proliferation and invasion of GC cells were examined using scratch assay, CCK-8 assay and Transwell assay, respectively. ChIP-PCR, dual-luciferase assay, RIP-qPCR and CoiP were utilized to confirm the interaction among PLAGL2, UCA1, miR-145-5p and YTHDF1 as well as METTL3, YTHDF1 and eEF-2. A mouse xenograft model was used utilized to further confirm the regulatory network. RESULTS PLAGL2 bound to the upstream promoter of UCA1, which regulated YTHDF1 by sponging miR-145-5p. METTL3 can mediate the m6A modification level of Snail. YTHDF1 recognized m6A-modified Snail by interacting with eEF-2 and thus promoted Snail expression, which eventually induced epithelial-mesenchymal transition (EMT) in GC cells and metastasis of GC. CONCLUSIONS Overall, our study demonstrates that PLAGL2 enhances Snail expression and GC progression via the UCA1/miR-145-5p/YTHDF1 axis, suggesting that PLAGL2 may become a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Wen Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Qunjun He
- Department of Quality Management and Information Statistics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Ni Li
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Kai Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| | - Honghui Chen
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, P.R. China
| |
Collapse
|
6
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
7
|
Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel) 2023; 15:cancers15041232. [PMID: 36831575 PMCID: PMC9954771 DOI: 10.3390/cancers15041232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
RNA modifications are diverse, dynamic, and reversible transcript alterations rapidly gaining attention due to their newly defined RNA regulatory roles in cellular pathways and pathogenic mechanisms. The exciting emerging field of 'epitranscriptomics' is predominantly centred on studying the most abundant mRNA modification, N6-methyladenine (m6A). The m6A mark, similar to many other RNA modifications, is strictly regulated by so-called 'writer', 'reader', and 'eraser' protein species. The abundance of genes coding for the expression of these regulator proteins and m6A levels shows great potential as diagnostic and predictive tools across several cancer fields. This review explores our current understanding of RNA modifications in glioma biology and the potential of epitranscriptomics to develop new diagnostic and predictive classification tools that can stratify these highly complex and heterogeneous brain tumours.
Collapse
Affiliation(s)
- Ágota Tűzesi
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Susannah Hallal
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
| | - Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kimberley L. Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
8
|
He S, Sun D, Li H, Cao M, Yu X, Lei L, Peng J, Li J, Li N, Chen W. Real-World Practice of Gastric Cancer Prevention and Screening Calls for Practical Prediction Models. Clin Transl Gastroenterol 2023; 14:e00546. [PMID: 36413795 PMCID: PMC9944379 DOI: 10.14309/ctg.0000000000000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Some gastric cancer prediction models have been published. Still, the value of these models for application in real-world practice remains unclear. We aim to summarize and appraise modeling studies for gastric cancer risk prediction and identify potential barriers to real-world use. METHODS This systematic review included studies that developed or validated gastric cancer prediction models in the general population. RESULTS A total of 4,223 studies were screened. We included 18 development studies for diagnostic models, 10 for prognostic models, and 1 external validation study. Diagnostic models commonly included biomarkers, such as Helicobacter pylori infection indicator, pepsinogen, hormone, and microRNA. Age, sex, smoking, body mass index, and family history of gastric cancer were frequently used in prognostic models. Most of the models were not validated. Only 25% of models evaluated the calibration. All studies had a high risk of bias, but over half had acceptable applicability. Besides, most studies failed to clearly report the application scenarios of prediction models. DISCUSSION Most gastric cancer prediction models showed common shortcomings in methods, validation, and reports. Model developers should further minimize the risk of bias, improve models' applicability, and report targeting application scenarios to promote real-world use.
Collapse
Affiliation(s)
- Siyi He
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Dianqin Sun
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - He Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Maomao Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Xinyang Yu
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Lin Lei
- Department of Cancer Prevention and Control, Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong Province, China
| | - Ji Peng
- Department of Cancer Prevention and Control, Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong Province, China
| | - Jiang Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing, China
| |
Collapse
|
9
|
Zhu Y, Li J, Yang H, Yang X, Zhang Y, Yu X, Li Y, Chen G, Yang Z. The potential role of m6A reader YTHDF1 as diagnostic biomarker and the signaling pathways in tumorigenesis and metastasis in pan-cancer. Cell Death Dis 2023; 9:34. [PMID: 36707507 PMCID: PMC9883452 DOI: 10.1038/s41420-023-01321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
m6A is an important RNA methylation in progression of various human cancers. As the m6A reader protein, YTHDF1 is reported to accelerate m6A-modified mRNAs translation in cytoplasm. It is highly expressed in various human cancers and contributes to the progression and metastasis of cancers. YTHDF1 was closely associated with poor prognosis and also used as a molecular marker for clinical diagnosis or therapy in human cancers. It has been reported to promote chemoresistance to Adriamycin, Cisplatin and Olaparib by increasing mRNA stability of its target molecule. Moreover, it contributes to CSC-like characteristic of tumor cells and inducing the antitumor immune microenvironment. Here, we reviewed the clinical diagnostic and prognostic values of YTHDF1, as well as the molecular mechanisms of YTHDF1 in progression and metastasis of human cancers.
Collapse
Affiliation(s)
- Yanan Zhu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Jing Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Hang Yang
- grid.415444.40000 0004 1800 0367Department of Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, 650106 Kunming, Yunnan China
| | - Xinyi Yang
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, 550004 Guiyang, Guizhou China
| | - Ya Zhang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Xinchao Yu
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Ying Li
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Gangxian Chen
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| | - Zuozhang Yang
- grid.452826.fBone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), 650118 Kunming, Yunnan China
| |
Collapse
|
10
|
Liu C, Wang X, Yang S, Cao S. Research Progress of m 6A RNA Methylation in Skin Diseases. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3091204. [PMID: 37124930 PMCID: PMC10132905 DOI: 10.1155/2023/3091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023]
Abstract
N6-Methyladenosine (m6A) is the most common mRNA modification in eukaryotes and is a dynamically reversible posttranscriptional modification. The enzymes involved in m6A modification mainly include methyltransferases (writers), demethylases (erasers), and methylated readers (Readers). m6A modification is mainly catalyzed by m6A methyltransferase and removed by m6A demethylase. The modified RNA can be specifically recognized and bound by m6A recognition protein. This protein complex then mediates RNA splicing, maturation, nucleation, degradation, and translation. m6A also alters gene expression and regulates cellular processes such as self-renewal, differentiation, invasion, and apoptosis. An increasing body of evidence indicates that the m6A methylation modification process is closely related to the occurrence of various skin diseases. In this review, we discuss the role of m6A methylation in skin development and skin diseases including psoriasis, melanoma, and cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Chang Liu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
11
|
Li G, Fu Q, Liu C, Peng Y, Gong J, Li S, Huang Y, Zhang H. The regulatory role of N6-methyladenosine RNA modification in gastric cancer: Molecular mechanisms and potential therapeutic targets. Front Oncol 2022; 12:1074307. [PMID: 36561529 PMCID: PMC9763625 DOI: 10.3389/fonc.2022.1074307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosinen (m6A) methylation is a frequent RNA methylation modification that is regulated by three proteins: "writers", "erasers", and "readers". The m6A modification regulates RNA stability and other mechanisms, including translation, cleavage, and degradation. Interestingly, recent research has linked m6A RNA modification to the occurrence and development of cancers, such as hepatocellular carcinoma and non-small cell lung cancer. This review summarizes the regulatory role of m6A RNA modification in gastric cancer (GC), including targets, the mechanisms of action, and the potential signaling pathways. Our present findings can facilitate our understanding of the significance of m6A RNA modification in GC.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qiru Fu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Cong Liu
- Editorial Department of Journal of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuxi Peng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Shilan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yan Huang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China,*Correspondence: Haiyuan Zhang, ; Yan Huang,
| |
Collapse
|
12
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
N6-Methyladenosine RNA-Binding Protein YTHDF1 in Gastrointestinal Cancers: Function, Molecular Mechanism and Clinical Implication. Cancers (Basel) 2022; 14:cancers14143489. [PMID: 35884552 PMCID: PMC9320224 DOI: 10.3390/cancers14143489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA and plays a crucial role in the occurrence and development of diseases. YTHDF1 is the most powerful and abundant m6A-encoded RNA reader. In this review, we summarize the evidence of the involvement of YTHDF1 in gastrointestinal cancers, its molecular mechanisms of action, and therapeutic implications. Abstract N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.
Collapse
|
14
|
Identification of Prognosis-Related Molecular Subgroups and Construction of a Prognostic Prediction Model Using Immune-Related Genes in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7117014. [PMID: 35712127 PMCID: PMC9197625 DOI: 10.1155/2022/7117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
Background Pancreatic cancer patients with similar clinicopathological status exhibit substantially different therapeutic responses, which might be caused by the vast molecular heterogeneity of tumors. In this study, we attempted to identify specific molecular subgroups and construct a prognostic prediction model based on the expression level of immune-related genes in pancreatic cancer. The transcriptome profiling, single nucleotide variation, copy number variation, clinicopathological information, and follow-up data of pancreatic cancer patients were obtained from The Cancer Genome Atlas database. Thereafter, the immune-related genes with prognostic significance were identified for further consensus cluster analysis. The molecular characteristics and clinicopathological information were compared between the identified subgroups, and a weighted correlation network analysis was performed to identify the hub genes associated with the subgroups. Finally, the prognostic prediction model based on immune-related genes was established using the least absolute shrinkage and selection operator (LASSO) analysis. Results A total of 67 immune-relevant genes with prognostic significance were selected and used for the consensus cluster analysis. The total samples were divided into two groups, C1 and C2. The subgroup C1 had a significantly worse prognosis than C2, as well as lower levels of immune cell infiltration, which indicate an immunosuppressed state. The mutational rate of the cancer-related genes including KRAS, TP53, and RNF43 was higher in the C1 subgroup. The C1 subgroup was associated with more advanced tumor grade and T stage and with higher mortality. Using LASSO regression, we developed a prognostic prediction model based on the expression levels of 19 immune-related genes, which we validated in three external data sets. In addition, we identified four potential therapeutic and prognostic biomarkers (TNNT1, KCNN4, SH2D3A, and PHLDA2). Conclusion We identified two novel molecular subgroups of pancreatic cancer and developed a prognostic prediction model based on the expression levels of immune-related genes, which could be used in a clinical setting and could aid in unraveling the molecular processes leading to the development of pancreatic cancer.
Collapse
|
15
|
NF- κB-Related Metabolic Gene Signature Predicts the Prognosis and Immunotherapy Response in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5092505. [PMID: 35036435 PMCID: PMC8753254 DOI: 10.1155/2022/5092505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
Background Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients' response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.
Collapse
|
16
|
Abstract
The relationship between epitranscriptomics and malignant tumours has become a popular research topic in recent years. N6-methyladenosine (m6A), the most common post-transcriptional modification in mammals, is involved in various physiological processes in different cancer types, including gastric cancer (GC). The incidence and mortality of GC have been increasing annually, especially in developing countries. Insights into the epitranscriptomic mechanisms of gastric carcinogenesis could provide potential strategies for the prevention, diagnosis, and treatment of GC. In this review, we describe the mechanisms of RNA m6A modification; the functions of m6A regulators in GC; the functional crosstalk among m6A, messenger RNA, and noncoding RNA; and the promising application of m6A in the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Yitian Xu
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, PR China
| |
Collapse
|
17
|
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1270-1279. [PMID: 34853726 PMCID: PMC8609105 DOI: 10.1016/j.omtn.2021.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
YTHDF1 is the most versatile and powerful reader protein of N6-methyladenosine (m6A)-modified RNA, and it can recognize both G(m6A)C and A(m6A)C RNAs as ligands without sequence selectivity. YTHDF1 regulates target gene expression by different mechanisms, such as promoting translation or regulating the stability of mRNA. Numerous studies have shown that YTHDF1 plays an important role in tumor biology and nontumor lesions by mediating the protein translation of important genes or by affecting the expression of key factors involved in many important cell signaling pathways. Therefore, in this review we focus on some of the roles of YTHDF1 in tumor biology and diseases.
Collapse
Affiliation(s)
- Zuyao Chen
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiaolin Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
18
|
Huang J, Shao Y, Gu W. Function and clinical significance of N6-methyladenosine in digestive system tumours. Exp Hematol Oncol 2021; 10:40. [PMID: 34246319 PMCID: PMC8272376 DOI: 10.1186/s40164-021-00234-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022] Open
Abstract
RNA modification, like DNA methylation, histone modification, non-coding RNA modification and chromatin rearrangement, plays an important role in tumours. N6-methyladenosine (m6A) is the most abundant RNA modification in cells, and it regulates RNA transcription, processing, splicing, degradation, and translation. m6A-associated proteins have been used as new biomarkers and therapeutic targets for tumour prediction and monitoring. There are three main types of proteins involved in m6A methylation: methyltransferases (METTL3, METTL14, WTAP, RBM15, ZC3H13 and KIAA1429), demethylases (FTO, ALKBH5 and ALKBH3) and RNA-binding proteins (YTHDF1-3, YTHDC1-2, IGF2BPs and HNRNPs). This article reviews the origins, characteristics and functions of m6A and its relationship with digestive system tumours based on recent research. The expression of m6A regulators can be used as an evaluation indicator of tumour growth and progression and as a prognostic indicator. In-depth research on m6A methylation in digestive system tumours may provide new directions for clinical prediction and further treatment.
Collapse
Affiliation(s)
- Junchao Huang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| |
Collapse
|
19
|
Dong S, Wu Y, Liu Y, Weng H, Huang H. N 6 -methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Commun (Lond) 2021; 41:538-559. [PMID: 33955720 PMCID: PMC8286143 DOI: 10.1002/cac2.12161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
As one of the most studied ribonucleic acid (RNA) modifications in eukaryotes, N6 -methyladenosine (m6 A) has been shown to play a predominant role in controlling gene expression and influence physiological and pathological processes such as oncogenesis and tumor progression. Writer and eraser proteins, acting opposite to deposit and remove m6 A epigenetic marks, respectively, shape the cellular m6 A landscape, while reader proteins preferentially recognize m6 A modifications and mediate fate decision of the methylated RNAs, including RNA synthesis, splicing, exportation, translation, and stability. Therefore, RNA metabolism in cells is greatly influenced by these three classes of m6 A regulators. Aberrant expression of m6 A regulators has been widely reported in various types of cancer, leading to cancer initiation, progression, and drug resistance. The close links between m6 A and cancer shed light on the potential use of m6 A methylation and its regulators as prognostic biomarkers and drug targets for cancer therapy. Given the notable effects of m6 A in reversing chemoresistance and enhancing immune therapy, it is a promising target for combined therapy. Herein, we summarize the recent discoveries on m6 A and its regulators, emphasizing their influences on RNA metabolism, their dysregulation and impacts in diverse malignancies, and discuss the clinical implications of m6 A modification in cancer.
Collapse
Affiliation(s)
- Shenghua Dong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yutong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Yadi Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| | - Hengyou Weng
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, P. R. China
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|