1
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
2
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
3
|
de Lima FA, Fernandes FL, de Almeida DRQ, Carvalho AE, Almeida VD, Cavalcante GA, de Morais NM, Rodrigues TD, do Nascimento EGC, de Oliveira IT, Bezerra CM, Fernandes JV, de Medeiros Fernandes TAA. Alteration in the Expression of Circular Rnas and its association with the Development and Progression of Osteosarcoma, an Integrative Review with High Sensitivity Research. Asian Pac J Cancer Prev 2024; 25:1195-1203. [PMID: 38679978 PMCID: PMC11162731 DOI: 10.31557/apjcp.2024.25.4.1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/22/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Osteosarcoma is the most common primary malignant bone tumor, mainly affecting children, young adults, and the elderly. It is an aggressive cancer with a poor prognosis, exhibiting low survival rates even with standard treatment. Recently, circular RNA molecules capable of influencing gene expression through various functions, with their main role being acting as microRNA sponges and reducing their intracellular expression, have been identified. Recent studies have linked circular RNAs to osteosarcoma development and progression. Therefore, the present study aimed to investigate the alteration in circular RNA expression during osteosarcoma development and progression. METHODS An integrative literature review was conducted from September 10th to November 12th, 2021, using the following databases: PubMed/MEDLINE, SCOPUS, Web of Science, OVID, and EMBASE. 129 full articles were included in the review. The obtained data were organized using a standardized data collection instrument, which included the following information: altered expression profile of circular RNAs, associated cancer hallmarks, clinical-pathological relationships of circular RNAs, and perspectives on the studied circular RNAs. RESULTS A total of 94 distinct circular RNAs were identified, predominantly showing an increased expression pattern. Approximately 91% of the studies that aimed to identify the mechanisms of action of circular RNAs highlighted the function of circular RNAs as microRNA sponges. The most associated cancer hallmarks with the identified circular RNAs were proliferative signaling induction, invasion and metastasis, and resistance to cell death. The altered expression of these circular RNAs generally correlated with a worse prognosis for patients, as evidenced by clinical features such as shorter survival, advanced Enneking and/or TNM stage, higher incidence of metastasis, larger tumor size, and increased chemoresistance. CONSLUSION These findings indicate the significance of circular RNA molecules in osteosarcoma carcinogenesis, suggesting their potential as new prognostic and/or diagnostic biomarkers, as well as alternative therapeutic targets in the fight against osteosarcoma.
Collapse
Affiliation(s)
- Felipe Alves de Lima
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | | | | | - Valeria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | - Nickson Melo de Morais
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Brazil.
| | | | | | | | | | - Jose Verissimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
4
|
Ma W, Gao Y, Yao X, Zhang J, Jia L, Wang D, Lin L, Bi LJ, Xu Q. Circ_UBAP2 exacerbates proliferation and metastasis of OS via targeting miR-665/miR-370-3p/HMGA1 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:212-227. [PMID: 37676907 DOI: 10.1002/tox.23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobin Yao
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Junhua Zhang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lina Jia
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dan Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lin Lin
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Li-Jun Bi
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qingxia Xu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Zhengzhou Key Laboratory of Digestive System Tumor Markers Diagnosis, Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
6
|
Ren Z, Wang S, Li B, Huang H, Zhang H, Yang Z, Tian X. Hsa_circ_0000073 promotes lipid synthesis of osteosarcoma through hsa-miR-1184/ FADS2 pathway. Cell Signal 2023; 110:110829. [PMID: 37506860 DOI: 10.1016/j.cellsig.2023.110829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
PURPOSE Osteosarcoma is one of the leading causes of cancer mortality in children and teenagers. Dysregulation of lipid metabolism has been reported to involve tumor progression. Our previous evidence has revealed that circular RNA hsa_circ_0000073 enhanced the proliferation and metastasis of osteosarcoma cells. However, the effect of hsa_circ_0000073 on the lipid metabolism of osteosarcoma remains unclear. In this paper, we focused on the effect of hsa_circ_0000073 in lipid metabolism and investigated a network among hsa_circ_0000073/ miR-1184 /FADS2 in osteosarcoma, which provides a new idea to treat osteosarcoma. METHODS The osteosarcoma and its adjacent tissue samples were collected for further validation. qRT-PCR or western blot was employed to detect the expression of hsa_circ_0000073, miR-1184, and FADS2 in OS cells and tissues. Microarray analysis, mass spectrometry, metabolomics analysis, and bioinformatics analysis were used to explore the potential function and target gene of hsa_circ_0000073. Oil red o, Nile red staining, and Triglyceride content assay were adopted to confirm the effect of hsa_circ_0000073 on the lipid metabolism of OS. Dual-luciferase reporter assays and RNA immunoprecipitation were applied to construct and validate the ceRNA network of hsa_circ_0000073. The xenograft mouse model was taken to verify the effect of hsa_circ_0000073 on lipid metabolism in vivo. RESULTS The results confirmed that hsa_circ_0000073 was raised in the tumor tissues more than its adjacent tissue. Moreover, the higher expression of hsa_circ_0000073 was associated with worse survival rates, advanced clinical stage, large tumor size, and metastasis. After hsa_circ_0000073 silence, the gene chip and metabolomics result implied that hsa_circ_0000073 expression is positively correlated with a 91 genes signature and 78 metabolites in MG-63 and Saos-2 cells. The bioinformatics analysis indicated that hsa_circ_0000073 might involve in the biological processes of lipid metabolism. Further loss and gain of function experiments affirmed that hsa_circ_0000073 could impact cell lipid synthesis. Mechanically, hsa_circ_0000073 favored the expression of FADS2 genes by sponging miR-1184. Consistent with these observations, silencing of hsa_circ_0000073 inhibited lipid synthesis in vivo xenograft mouse model. CONCLUSIONS Our study revealed that hsa_circ_0000073 contributed to the lipid synthesis of osteosarcoma by decreasing the expression of miR-1184, thereby increasing FADS2, which provides new insights into treating osteosarcoma.
Collapse
Affiliation(s)
- Zhijing Ren
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuhui Wang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hua Zhang
- Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiaobin Tian
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
7
|
Chen S, Xu Y, Yang B. CircUSP48 promotes malignant behavior by regulating CYR61 via miR-365 in osteosarcoma. Funct Integr Genomics 2023; 23:270. [PMID: 37553503 DOI: 10.1007/s10142-023-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Even though circular RNAs (circRNAs), a class of non-coding endogenous RNA, play a crucial role in the progression of osteosarcoma (OS), the specific function of hsa_circ_0000028 (circUSP48) remains unclear. This study aims to elucidate the mechanism by which circUSP48 regulates OS. We employed qRT-PCR and western blot techniques to quantify circDOCK1, miR-186, and DNMT3A levels. Cell proliferation was assessed using the cell counting kit-8 (CCK-8), 5-Ethynyl-20-deoxyuridine (EdU) assay, and colony formation assay. Cell migration and invasion were evaluated through Transwell and cell scratch assays. Furthermore, we performed dual-luciferase reporter, RIP, and RNA pull-down assays to investigate the association between circUSP48, miR-365, and CYR61. In addition, an in vivo xenograft model was utilized to assess the functional role of circUSP48. High levels of circUSP48 and CYR61 were observed in OS tissues and cells, while miR-365 levels were low. Knockdown of circUSP48 suppressed the multiplication, motility, and invasion of OS cells, thereby reducing carcinoma growth. Moreover, inhibition of miR-365 reversed the OS cell-suppressive effect caused by circUSP48 knockdown through direct interaction with circUSP48. Additionally, circUSP48 upregulated the expression of CYR61 by sponging miR-365. The findings suggest that circUSP48 promotes malignant behavior in OS by regulating the expression of CYR61 through miR-365, making it a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Shunguang Chen
- Department of Orthopedics, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, China.
| | - Yan Xu
- Department of Orthopedics, Gong An Country People's Hospital, Jingzhou, 434050, China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Luo Y, Yang B, Yuan X, Zheng J. Silencing circUSP48 suppresses osteosarcoma progression by regulating the miR-335/ smad nuclear interacting protein 1 pathway. J Clin Lab Anal 2023; 37:e24828. [PMID: 36597862 PMCID: PMC9937887 DOI: 10.1002/jcla.24828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/27/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can have a critical function in the multi-processes of osteosarcoma (OS). Nevertheless, whether circUSP48 is involved in OS progression remains unclear. METHODS In the current work, the expression of circUSP48, miR-335 and SNIP1 in OS cell lines and tissues were evaluated using qRT-PCR. Then, Sanger sequencing, RNase R treatment and FISH assay were performed for circUSP48 validation. Furthermore, the function and potential mechanisms of circUSP48 in OS were investigated by performing loss-of-function experiments. RESULTS Silencing circUSP48 could suppress proliferation, invasion as well as migration of OS cells in vitro, also inhibiting the growth of tumor in vivo. Importantly, circUSP48 promoted OS malignancy by sponging miR-335 to upregulate SNIP1. CONCLUSION Overall, these findings suggested that circUSP48 acted as an oncogene in OS, which might become a new target for OS therapy.
Collapse
Affiliation(s)
- Yue Luo
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Bo Yang
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaopin Yuan
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jian Zheng
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022; 11:biomedicines11010036. [PMID: 36672544 PMCID: PMC9856195 DOI: 10.3390/biomedicines11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
10
|
Jin Z, Ye J, Chen S, Ren Y, Guo W. CircDOCK1 Regulates miR-186/DNMT3A to Promote Osteosarcoma Progression. Biomedicines 2022; 10:biomedicines10123013. [PMID: 36551768 PMCID: PMC9775081 DOI: 10.3390/biomedicines10123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs), as a class of endogenous RNAs, are implicated in osteosarcoma (OS) progression. However, the functional properties of circDOCK1 in OS have been largely unexplored. The present study demonstrated the regulatory mechanism of circDOCK1 in OS. METHODS QRT-PCR and Western blots were used to determine the abundances of circDOCK1, miR-186, and DNMT3A. Cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, Transwell, and wound healing assays were used to examine cellular multiplication, motility, and invasion. Luciferase reporter analysis, RNA immunoprecipitation (RIP), and pull-down assays were used to verify target relationships. Xenograft models were used to analyze in vivo function. RESULTS OS tissues and cells showed high levels of circDOCK1. By knocking down circDOCK1, cellular multiplication, motility, and invasion were suppressed. Furthermore, silencing circDOCK1 suppressed the growth of tumor xenografts. According to mechanistic studies, miR-186 targets DNA methyltransferases 3A (DNMT3A) directly and acts as a circDOCK1 target. Furthermore, circDOCK1 upregulated DNMT3A expression through sponging miR-186 to regulate the progression of OS. CONCLUSIONS CircDOCK1 promotes OS progression by interacting with miR-186/DNMT3ADNMT3A, representing a novel therapeutic approach.
Collapse
Affiliation(s)
| | | | | | | | - Weichun Guo
- Correspondence: ; Tel.: +86-027-88041911-82209
| |
Collapse
|
11
|
Zhou Y, Tang X, Huang Z, Wen J, Xiang Q, Liu D. KLF5 promotes KIF1A expression through transcriptional repression of microRNA-338 in the development of pediatric neuroblastoma. J Pediatr Surg 2022; 57:192-201. [PMID: 35033353 DOI: 10.1016/j.jpedsurg.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neuroblastoma (NB) comprises about 8-10% of pediatric cancers, and microRNA (miR)-338 downregulation has been implicated in NB. However, the underlying molecular mechanism remains largely unclear. The main goal of this study is to probe the regulatory role of miR-338 and the upstream and downstream biomolecules involved in NB. METHODS The differentially expressed miRNAs were screened by analyzing the NB gene expression microarray GSE121513 from the GEO database, and the differences in expression of the screened miRNAs were verified in clinically collected NB tissues versus dorsal root ganglions. Subsequently, the relationship between the miR-338 expression and NB cell growth was validated in vitro and in vivo, and the upstream and downstream regulatory mechanisms of miR-338 were further analyzed by bioinformatics. Functional rescue experiments were used to verify their effects on NB cell growth. RESULTS miR-338 expressed poorly in NB tissues, and overexpression of miR-338 significantly inhibited NB cell growth in vitro and in vivo. The prediction results showed that miR-338 could target KIF1A, and miR-338 expression was negatively correlated with the expression of KIF1A. We further found that miR-338 was transcriptionally regulated by the transcription factor KLF5. Overexpression of KLF5 or KIF1A significantly attenuated the inhibitory effect of miR-338 mimic on NB cell growth. Finally, miR-338 blocked the Hedgehog signaling pathway by inhibiting the expression of KIF1A. CONCLUSION Overexpression of KLF5 reduced expression of miR-338, which in turn increased the expression of KIF1A and activated the Hedgehog signaling pathway, leading to the progression of NB.
Collapse
Affiliation(s)
- Yuxiang Zhou
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China
| | - Xianglian Tang
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China
| | - Zhao Huang
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China
| | - Jiabing Wen
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China
| | - Qiangxing Xiang
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China
| | - Denghui Liu
- Department of Pediatric Surgery, Hunan Children's Hospital, No. 86, Ziyuan Road, Yuhua District, Changsha, Hunan 410007, PR China.
| |
Collapse
|
12
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Tian W, Yang X, Yang H, Lv M, Sun X, Zhou B. Exosomal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK signaling pathway. Cell Death Dis 2021; 12:1030. [PMID: 34718336 PMCID: PMC8557210 DOI: 10.1038/s41419-021-04314-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023]
Abstract
Globally, lung cancer remains one of the most prevalent malignant cancers. However, molecular mechanisms and functions involved in its pathogenesis have not been clearly elucidated. This study aimed to evaluate the specific regulatory mechanisms of exosomal miR-338-3p/CHL1/MAPK signaling pathway axis in non-small-cell lung cancer. Western blotting and qRT-PCR (reverse transcription-polymerase chain reaction) were used to determine the expression levels of CHL1 and exosomal miR-338-3p in NSCLC (non-small-cell lung cancer). The CHL1 gene was upregulated and downregulated to evaluate its functions in NSCLC progression. In vitro MTS and apoptotic assays were used to investigate the functions of CHL1 and exosomal miR-338-3p in NSCLC progression. The high-throughput sequencing was used to explore differently expressed exosomal miRNAs. The biological relationships between MAPK signaling pathway and CHL1 and exosomal miR-338-3p in NSCLC were predicted through bioinformatics analyses and verified by western blotting. Elevated CHL1 levels were observed in NSCLC tissues and cells. Upregulated CHL1 expression enhanced NSCLC cells’ progression by promoting tumor cells proliferation while suppressing their apoptosis. Conversely, the downregulation of the CHL1 gene inhibited NSCLC cells’ growth and promoted tumor cells’ apoptotic rate. Additionally, CHL1 activated the MAPK signaling pathway. Besides, we confirmed that miR-338-3p directly sponged with CHL1 to mediate tumor cells progression. Moreover, exosomal miR-338-3p serum levels in NSCLC patients were found to be low. BEAS-2B cells can transfer exosomal miR-338-3p to A549 cells and SK-MES-1 cells. In addition, elevated exosomal miR-338-3p levels significantly inhibited tumor cells proliferation and promoted their apoptosis by suppressing activation of the MAPK signaling pathway. Exosomal miR-338-3p suppresses tumor cells' metastasis by downregulating the expression of CHL1 through MAPK signaling pathway inactivation.
Collapse
Affiliation(s)
- Wen Tian
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xianglin Yang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - He Yang
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Meiwen Lv
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xinran Sun
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China. .,Department of Epidemiology, School of Public Health, China Medical University, 110122, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Zhong J, Zhang G, Yao W. Clinicopathologic significance and prognostic value of circRNAs in osteosarcoma: a systematic review and meta-analysis. J Orthop Surg Res 2021; 16:578. [PMID: 34620208 PMCID: PMC8495992 DOI: 10.1186/s13018-021-02568-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
Abstract Background Osteosarcoma is the most prevalent malignant osseous sarcoma in children and adolescents, whose prognosis is still relatively poor nowadays. Recent studies have shown the critical function and potential clinical applications of circular RNAs (circRNAs) in osteosarcoma. Our review aimed to perform an updated meta-analysis to explore their clinicopathologic significance and prognostic value. Methods The structured literature was conducted via eight electronic databases and four gray literature sources until 20 Feb 2021 to identify eligible studies. The data was extracted directly from the articles or reconstructed based on Kaplan-Meier curves. The Newcastle-Ottawa Scale (NOS) tool was used to assess study quality. The clinicopathologic significance of circRNAs was measured through odds ratios (ORs) and their 95% confidence intervals (CIs), while the prognostic value was evaluated through hazard ratios (HRs) and their 95% CIs of overall survival (OS) and disease-free survival (DFS). Heterogeneity and publication bias were assessed. Sensitivity analyses were conducted. Subgroup analyses were performed according to study characteristics. An additional analysis was performed to investigate the relation between circ_0002052 and osteosarcoma. Results Fifty-two studies were identified, in which 38 on clinicopathologic features and 36 on survival prognosis were included in quantitative analysis. The overall study quality was moderate with a median NOS score of 5.5 stars (range 3 to 8). For clinicopathologic features, dysregulated circRNAs were related to larger tumor size (OR 2.122, 95%CI 1.418–3.175), advanced clinical stage (OR 2.847, 95%CI 2.059–3.935), and present of metastasis (OR 2.630, 95%CI 1.583–4.371). For chemotherapy, dysregulated circRNAs suggest a better response (OR 0.443, 95%CI 0.231–0.849), but a higher probability of resistance (OR 9.343, 95%CI 5.352–16.309). For survival prognosis, dysregulated circRNAs were significantly correlated with poor OS (HR 2.437, 95%CI 2.224–2.670) and DFS (HR 2.125, 95%CI 1.621–2.786). The results did not show differences among subgroups. Higher circ_0002052 expression showed a relation with poor OS (HR 3.197, 95%CI 2.054–4.976). Conclusions Our review demonstrated that abnormally expressed circRNAs have a relation with advanced clinicopathologic features and better response, but a higher probability of resistance and poor survival prognosis in osteosarcoma patients. However, more studies are encouraged to provide more robust evidence to translate circRNAs into clinical practice. Trial registration PROSPERO ID: CRD42021235031 Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02568-2.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China
| | - Guangcheng Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
15
|
Ren Z, Yang Q, Guo J, Huang H, Li B, Yang Z, Tian X. Circular RNA hsa_circ_0000073 Enhances Osteosarcoma Cells Malignant Behavior by Sponging miR-1252-5p and Modulating CCNE2 and MDM2. Front Cell Dev Biol 2021; 9:714601. [PMID: 34568326 PMCID: PMC8459753 DOI: 10.3389/fcell.2021.714601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: An increasing number of studies have demonstrated that circular RNAs (circRNAs) are involved in tumor progression. However, the role of hsa_circ_0000073 in osteosarcoma (OS) is still not fully elucidated. Methods: Quantitative reverse transcription-polymerase chain reaction or Western blot was used to detect the gene expression. GeneChip analysis, bioinformatics, luciferase reporter, and RNA immunoprecipitation assays were adopted to predict and verify the relationships between genes. Counting Kit-8 Assay, clone formation assay, wound-healing assay, transwell assays, cell cycle assays, and in vivo tumorigenesis were used to evaluate cell function. Results: hsa_circ_0000073 was highly expressed in OS cell lines and could promote OS progression, including proliferation, migration, invasion, and cell cycle in vitro as well as tumorigenesis in vivo. Mechanically, hsa_circ_0000073 could readily downregulate the expression of CCNE2 and MDM2 through miR-1252-5p. Rescue experiments validated miR-1252-5p mimics, or CCNE2/MDM2 short hairpin RNA could reverse the hsa_circ_0000073 overexpressing-induced impairment of malignant tumor behavior. Conclusion: hsa_circ_0000073 functions as a tumor promoter in OS to increase malignant tumor behavior through sponging miR-1252-5p and regulating CCNE2 and MDM2 expression, which could be a novel target for OS therapy.
Collapse
Affiliation(s)
- Zhijing Ren
- Medical College of Guizhou University, Guiyang, China.,Department of Clinical Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qinqin Yang
- Medical College of Guizhou University, Guiyang, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhen Yang
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaobin Tian
- Medical College of Guizhou University, Guiyang, China.,Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
circRNA hsa_circ_0005909 Predicts Poor Prognosis and Promotes the Growth, Metastasis, and Drug Resistance of Non-Small-Cell Lung Cancer via the miRNA-338-3p/SOX4 Pathway. DISEASE MARKERS 2021; 2021:8388512. [PMID: 34413915 PMCID: PMC8369175 DOI: 10.1155/2021/8388512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 12/25/2022]
Abstract
Background Circular RNAs (circRNAs) are powerful factors in regulating various cancer behaviors. It has been manifested in previous researches that circular RNA hsa_circ_0005909 (circ_0005909) exhibits a regulatory function in osteosarcoma. However, there are no other studies on whether circ_0005909 displays potential functions on the progression of non-small-cell lung cancer (NSCLC). Methods RT-PCR was applied to examine the expression of circ_0005909 in NSCLC. To study the specific behaviors of NSCLC cells after circ_0005909 knockdown, cell counting kit-8 (CCK-8) assays, colony formation assays, Transwell assays, and xenograft tumor model assays were conducted. Bioinformatics and luciferase reporter assays were employed to study the association among circ_0005909, miRNA-338-3p, and SOX4. Results In this research, our group firstly showed that circ_0005909 expressions were distinctly increased in NSCLC specimens and cell lines. Clinical studies revealed that high circ_0005909 expressions were associated with poor prognosis of NSCLC patients. Functionally, knockdown of circ_0005909 was observed to suppress the proliferation, metastasis, and drug resistance of NSCLC cells. In the terms of mechanism, circ_0005909 could act as a sponge of miRNA-338-3p, and miRNA-338-3p could target SOX4. In addition, miRNA-338-3p inhibitors reversed the suppressor ability of circ_0005909 silence on NSCLC behaviors. Conclusions circ_0005909 promoted the progression of NSCLC via the modulation of the miRNA-338-3p/SOX4 axis, which may be a therapeutic target for NSCLC.
Collapse
|
17
|
Huang Z, Wang S, Wei H, Chen H, Shen R, Lin R, Wang X, Lan W, Lin R, Lin J. Inhibition of BUB1 suppresses tumorigenesis of osteosarcoma via blocking of PI3K/Akt and ERK pathways. J Cell Mol Med 2021; 25:8442-8453. [PMID: 34337852 PMCID: PMC8419163 DOI: 10.1111/jcmm.16805] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour that mainly affects teenagers, with patients displaying poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1), a type of serine/threonine kinase that is linked to pro-tumorigenic phenomena, has not been well studied in OS. Hence, this study aimed to explore the role of BUB1 in OS. The expression of BUB1 in OS specimens and cell lines was assessed using immunohistochemistry and Western blot analysis. Univariate and multivariate analyses were applied to evaluate the impact of BUB1 on patient survival. Cell counting kit-8, wound-healing and Transwell assays, as well as flow cytometry, were used to investigate the influence of BUB1 inhibition on OS in vitro. Moreover, a tumour xenograft model was established to investigate the in vivo effect of BUB1 inhibition on OS tumour growth. Results showed that BUB1 was overexpressed in OS specimens and cell lines. Furthermore, BUB1 overexpression was closely associated with the poor clinical outcomes of patients with OS. Inhibition of BUB1 markedly suppressed cell proliferation and tumour growth, cell migration, invasion and induced cell apoptosis of OS by blocking the PI3K/Akt and ERK signalling pathways. Thus, our study suggested that overexpression of BUB1 protein contributed to poor survival of OS patients and that inhibition of BUB1 resulted in considerable anti-tumour activity associated with proliferation, migration, invasion and apoptosis of OS.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shenglin Wang
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxiang Wei
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rongkai Shen
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renqin Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinwen Wang
- Department of Orthopedics, The people's Hospital of Jiangmen City, Southern Medical University, Jiangmen, China
| | - Wenbin Lan
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjin Lin
- Department of Nursing, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jianhua Lin
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Orthopedics Research Institution, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|