1
|
Xu W, Tao M, Liu Y, Yan J, Hu J, Wang L. METTL3-mediated SMPDL3A promotes cell growth, metastasis and immune process of hepatocellular carcinoma by regulating LRPPRC. Cell Signal 2025; 127:111543. [PMID: 39631618 DOI: 10.1016/j.cellsig.2024.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Methyltransferase-like protein 3 (METTL3) has been confirmed to act as a tumor promoter to regulate hepatocellular carcinoma (HCC) progression. Therefore, more roles and mechanisms of METTL3 in HCC progression deserve to be further revealed. METHODS The mRNA and protein levels of METTL3, sphingomyelin phodiesterase acid-like 3 A (SMPDL3A), and leucine rich pentatricopeptide repeat containing (LRPPRC) were determined by qRT-PCR and western blot. Cell proliferation, apoptosis, invasion and migration were detected by CCK8 assay, EdU assay, flow cytometry, transwell assay and wound healing assay. HCC cells were co-cultured with phytohemagglutinin-stimulated peripheral blood mononuclear cells, cytokine-induced killer cells, or CD8 + T-cells. IFN-γ, TNF-α levels, HCC cell survival rate and CD8 + T-cell apoptosis were determined to assess cell immune process. The interaction between METTL3, SMPDL3A and LRPPRC was assessed by MeRIP assay, RIP assay, dual-luciferase reporter assay or Co-IP assay. Animal experiments were performed to evaluate the effect of METTL3 knockdown on HCC tumorigenesis and lung metastasis. RESULTS METTL3 was upregulated in HCC tissues and cells, and its knockdown repressed HCC cell proliferation, invasion, migration, immune process and promoted apoptosis. METTL3 increased SMPDL3A mRNA stability by m6A methylation modification, and this modification could be recognized by IGF2BP1. SMPDL3A overexpression reversed the inhibitory effect of METTL3 knockdown on HCC cell growth, metastasis and immune process. SMPDL3A interacted with LRPPRC to positively regulate its expression, and LRPPRC overexpression also eliminated the regulation of SMPDL3A silencing on HCC progression. In addition, downregulation of METTL3 repressed HCC tumorigenesis and lung metastasis via mediating SMPDL3A/LRPPRC axis. CONCLUSION METTL3 accelerated HCC cell growth, metastasis and immune process by regulating SMPDL3A/LRPPRC axis, providing a potential target for HCC treatment.
Collapse
Affiliation(s)
- Weixin Xu
- Department of Laboratory Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Miaomiao Tao
- Department of Laboratory Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yeqiong Liu
- Department of Laboratory Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Jiali Hu
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Lei Wang
- Department of Nephrology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China.
| |
Collapse
|
2
|
Rong H, Jiang Y. METTL14 suppresses the migration and invasion of hepatocellular carcinoma cells by m6A methylation of RPLP2. Sci Rep 2025; 15:5660. [PMID: 39955344 PMCID: PMC11830075 DOI: 10.1038/s41598-025-87701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Fluctuating N(6)-methyladenosine (m6A) levels affect the progression of hepatocellular carcinoma (HCC). METTL14, a m6A methyltransferase, acts as a tumor suppressor in HCC; however, its underlying mechanisms need further clarification. This study aimed to clarify the role of METTL14 in HCC and the underlying molecular mechanism. Cellular behaviors were evaluated using cell counting kit-8, EdU, and Transwell assays. The molecular mechanism was analyzed using methylated RNA binding protein immunoprecipitation, dual-luciferase reporter assay, and RNA stability determination. The results demonstrated that METTL14 expression was decreased in HCC tissues and cells, and its overexpression suppressed cellular proliferation, migration, and invasion. Moreover, RPLP2 was negatively correlated to METTL14, and it was highly expressed in HCC tissues and cells. METTL14 promoted the m6A modification of RPLP2 and reduced its stability, thereby inhibiting malignant behaviors. Besides, YTHDC2 decreased RPLP2 expression and reversed the stability induced by METTL14. In conclusion, METTL14 inhibits HCC progression by regulating the YTHDC2-m6A-RPLP2 axis.
Collapse
Affiliation(s)
- Haiyan Rong
- Laboratory Medicine Diagnostic Centre, The First Affiliated Hospital, Xinjiang Medical University, No.118, Liyushan Road, Xinshi District, Urumqi, 830011, Xinjiang, China
| | - Yan Jiang
- Laboratory Medicine Diagnostic Centre, The First Affiliated Hospital, Xinjiang Medical University, No.118, Liyushan Road, Xinshi District, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
3
|
Singh S, Gupta S, Abhishek R, Sachan M. Regulation of m 6A (N 6-Methyladenosine) methylation modifiers in solid cancers. Funct Integr Genomics 2024; 24:193. [PMID: 39438339 DOI: 10.1007/s10142-024-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solid cancers constitute a tremendous burden on global healthcare, requiring a deeper understanding of the molecular mechanisms underlying cancer development and progression. Epigenetic changes, notably N6-methyladenosine (m6A) RNA methylation, have emerged as important contributors to the biology of solid tumors in recent years. This epigenetic mark dynamically affects gene expression at the post-transcriptional level and modulates a variety of cellular processes, making it a focus of research in the context of solid tumors. m6A modification patterns are dysregulated in a variety of solid cancers, including ovarian, breast, lung, colorectal, pancreatic, and others. This dysregulated m6A landscape has been shown to induce significant changes in the expression of oncogenes, tumor suppressors, and genes involved in cancer stem cells, metastasis, and treatment resistance. In solid tumors, the interaction of m6A "writers" (e.g., METTL3, METTL14, and others), "erasers" (e.g., ALKBH5, FTO), and "readers" (e.g., members of YTHDF proteins and others) delicately changes the m6A methylome. Targeting m6A regulators as a potential therapeutic method to control gene expression and prevent tumor development seems a novel strategy. To enhance treatment results, advances in this area of research have led to the development of targeted treatments aiming at restoring or altering m6A alteration patterns in solid tumors.
Collapse
Affiliation(s)
- Sakshi Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Rajul Abhishek
- Deparment of Surgical Oncology, Motilal Nehru Medical College, Uttar Pradesh, Prayagraj, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India.
| |
Collapse
|
4
|
Li S, Mehal WZ, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2105-2119. [PMID: 38809498 PMCID: PMC11545962 DOI: 10.1007/s11427-023-2494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 05/30/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern associated with high risk of metabolic syndrome, and has impacted a substantial segment of the population. The disease spectrum ranges from simple fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is increasingly becoming a prevalent indication for liver transplantation. The existing therapeutic options for NAFLD, NASH, and HCC are limited, underscoring the urgent need for innovative treatment strategies. Insights into gene expression, particularly RNA modifications such as N6 methyladenosine (m6A), hold promising avenues for interventions. These modifications play integral roles in RNA metabolism and cellular functions, encompassing the entire NAFLD-NASH-HCC progression. This review will encompass recent insights on diverse RNA modifications, including m6A, pseudouridine (ψ), N1-methyladenosine (m1A), and 5-methylcytidine (m5C) across various RNA species. It will uncover their significance in crucial aspects such as steatosis, inflammation, fibrosis, and tumorigenesis. Furthermore, prospective research directions and therapeutic implications will be explored, advancing our comprehensive understanding of the intricate interconnected nature of these pathological conditions.
Collapse
Affiliation(s)
- Simiao Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Jiang L, Zhang Y, Qian J, Zhou X, Ma L, Zhu S, Wang L, Wang W, Yang W, Luo Y, Lang W, Xu G, Ren Y, Mei C, Ye L, Zhang Q, Liu X, Jin J, Sun J, Tong H. The m 6A methyltransferase METTL14 promotes cell proliferation via SETBP1-mediated activation of PI3K-AKT signaling pathway in myelodysplastic neoplasms. Leukemia 2024; 38:2246-2258. [PMID: 39054337 PMCID: PMC11436359 DOI: 10.1038/s41375-024-02350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m6A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m6A modification and m6A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m6A level and the expression of m6A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts ≥5%. Additionally, m6A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m6A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m6A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m6A modification for MDS therapy.
Collapse
Affiliation(s)
- Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yudi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiejing Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Liu JX, Zhang X, Xu WH, Hao XD. The role of RNA modifications in hepatocellular carcinoma: functional mechanism and potential applications. Front Immunol 2024; 15:1439485. [PMID: 39229278 PMCID: PMC11368726 DOI: 10.3389/fimmu.2024.1439485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with a poor prognosis. The molecular mechanisms underlying its development remain unclear. Recent studies have highlighted the crucial role of RNA modifications in HCC progression, which indicates their potential as therapeutic targets and biomarkers for managing HCC. In this review, we discuss the functional role and molecular mechanisms of RNA modifications in HCC through a review and summary of relevant literature, to explore the potential therapeutic agents and biomarkers for diagnostic and prognostic of HCC. This review indicates that specific RNA modification pathways, such as N6-methyladenosine, 5-methylcytosine, N7-methylguanosine, and N1-methyladenosine, are erroneously regulated and are involved in the proliferation, autophagy, innate immunity, invasion, metastasis, immune cell infiltration, and drug resistance of HCC. These findings provide a new perspective for understanding the molecular mechanisms of HCC, as well as potential targets for the diagnosis and treatment of HCC by targeting specific RNA-modifying enzymes or recognition proteins. More than ten RNA-modifying regulators showed the potential for use for the diagnosis, prognosis and treatment decision utility biomarkers of HCC. Their application value for HCC biomarkers necessitates extensive multi-center sample validation in the future. A growing number of RNA modifier inhibitors are being developed, but the lack of preclinical experiments and clinical studies targeting RNA modification in HCC poses a significant obstacle, and further research is needed to evaluate their application value in HCC treatment. In conclusion, this review provides an in-depth understanding of the complex interplay between RNA modifications and HCC while emphasizing the promising potential of RNA modifications as therapeutic targets and biomarkers for managing HCC.
Collapse
Affiliation(s)
- Jin-Xiu Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Du B, Wang P, Wei L, Qin K, Pei Z, Zheng J, Wang J. Unraveling the independent role of METTL3 in m6A modification and tumor progression in esophageal squamous cell carcinoma. Sci Rep 2024; 14:15398. [PMID: 38965238 PMCID: PMC11224396 DOI: 10.1038/s41598-024-64517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
METTL3 and METTL14 are traditionally posited to assemble the m6A methyltransferase complex in a stoichiometric 1:1 ratio, modulating mRNA fate via m6A modifications. Nevertheless, recent investigations reveal inconsistent expression levels and prognostic significance of METTL3 and METTL14 across various tumor types, challenging their consistent functional engagement in neoplastic contexts. A pan-cancer analysis leveraging The Cancer Genome Atlas (TCGA) data has identified pronounced disparities in the expression patterns, functional roles, and correlations with tumor burden between METTL3 and METTL14, particularly in esophageal squamous cell carcinoma (ESCC). Knockdown experiments of METTL3 in EC109 cells markedly suppress cell proliferation both in vitro and in vivo, whereas METTL14 knockdown shows a comparatively muted effect on proliferation and does not significantly alter METTL3 protein levels. mRNA sequencing indicates that METTL3 singularly governs the expression of 1615 genes, with only 776 genes co-regulated with METTL14. Additionally, immunofluorescence co-localization studies suggest discrepancies in cellular localization between METTL3 and METTL14. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrate that METTL3 uniquely associates with the Nop56p-linked pre-rRNA complex and mRNA splicing machinery, independent of METTL14. Preliminary bioinformatics and multi-omics investigations reveal that METTL3's autonomous role in modulating tumor cell proliferation and its involvement in mRNA splicing are potentially pivotal molecular mechanisms. Our study lays both experimental and theoretical groundwork for a deeper understanding of the m6A methyltransferase complex and the development of targeted tumor therapies focusing on METTL3.
Collapse
Affiliation(s)
- Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Lingyu Wei
- Central Laboratory of Clinical Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 047500, China
| | - Kai Qin
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 047500, China
| | - Jinping Zheng
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China.
| |
Collapse
|
8
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Tan L, Wang S, Huang S, Tie Y, Sai N, Mao Y, Zhao S, Hou Y, Dou H. FoxO1 promotes ovarian cancer by increasing transcription and METTL14-mediated m 6A modification of SMC4. Cancer Sci 2024; 115:1224-1240. [PMID: 38403332 PMCID: PMC11006996 DOI: 10.1111/cas.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/24/2024] [Accepted: 02/10/2024] [Indexed: 02/27/2024] Open
Abstract
The transcription factor forkhead box protein O1 (FoxO1) is closely related to the occurrence and development of ovarian cancer (OC), however its role and molecular mechanisms remain unclear. Herein, we found that FoxO1 was highly expressed in clinical samples of OC patients and was significantly correlated with poor prognosis. FoxO1 knockdown inhibited the proliferation of OC cells in vitro and in vivo. ChIP-seq combined with GEPIA2 and Kaplan-Meier database analysis showed that structural maintenance of chromosome 4 (SMC4) is a downstream target of FoxO1, and FoxO1 promotes SMC4 transcription by binding to its -1400/-1390 bp promoter. The high expression of SMC4 significantly blocked the tumor inhibition effect of FoxO1 knockdown. Furtherly, FoxO1 increased SMC4 mRNA abundance by transcriptionally activating methyltransferase-like 14 (METTL14) and increasing SMC4 m6A methylation on its coding sequence region. The Cancer Genome Atlas dataset analysis confirmed a significant positive correlation between FoxO1, SMC4, and METTL14 expression in OC. In summary, this study revealed the molecular mechanisms of FoxO1 regulating SMC4 and established a clinical link between the expression of FoxO1/METTL14/SMC4 in the occurrence of OC, thus providing a potential diagnostic target and therapeutic strategy.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuangan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shijia Huang
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yujuan Tie
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Na Sai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Yichen Mao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
| |
Collapse
|
10
|
Wang B, Mao Z, Ye J, Jiao X, Zhang T, Wang Q, Han S, Zhang Y, Wang C, Dong T, Cui B. Glycolysis Induced by METTL14 Is Essential for Macrophage Phagocytosis and Phenotype in Cervical Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:723-736. [PMID: 38197667 PMCID: PMC10828180 DOI: 10.4049/jimmunol.2300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 01/11/2024]
Abstract
N 6-methyladenosine (m6A) is the most abundant mRNA modification in mammals and it plays a vital role in various biological processes. However, the roles of m6A on cervical cancer tumorigenesis, especially macrophages infiltrated in the tumor microenvironment of cervical cancer, are still unclear. We analyzed the abnormal m6A methylation in cervical cancer, using CaSki and THP-1 cell lines, that might influence macrophage polarization and/or function in the tumor microenvironment. In addition, C57BL/6J and BALB/c nude mice were used for validation in vivo. In this study, m6A methylated RNA immunoprecipitation sequencing analysis revealed the m6A profiles in cervical cancer. Then, we discovered that the high expression of METTL14 (methyltransferase 14, N6-adenosine-methyltransferase subunit) in cervical cancer tissues can promote the proportion of programmed cell death protein 1 (PD-1)-positive tumor-associated macrophages, which have an obstacle to devour tumor cells. Functionally, changes of METTL14 in cervical cancer inhibit the recognition and phagocytosis of macrophages to tumor cells. Mechanistically, the abnormality of METTL14 could target the glycolysis of tumors in vivo and vitro. Moreover, lactate acid produced by tumor glycolysis has an important role in the PD-1 expression of tumor-associated macrophages as a proinflammatory and immunosuppressive mediator. In this study, we revealed the effect of glycolysis regulated by METTL14 on the expression of PD-1 and phagocytosis of macrophages, which showed that METTL14 was a potential therapeutic target for treating advanced human cancers.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhonghao Mao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Jinwen Ye
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Qi Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, People’s Republic of China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Chunling Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Taotao Dong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
11
|
Ramasamy D, Thippannah M, Maharajan HRP, Balaiah M, Seshadri RA, Kodous AS, Herceg Z, Mehta A, Rao AKDM, Mani S. Transcriptome-wide profiling identifies colon cancer-associated m6A transcripts and potential RNA methyl modifiers. Mol Biol Rep 2024; 51:299. [PMID: 38345740 DOI: 10.1007/s11033-024-09217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is a prevalent and crucial RNA methylation modification that plays a significant role in various biological and pathological processes. The dysregulation of m6A has been linked to the initiation, progression, and metastasis of several cancer types, including colon cancer. The transcriptome of colon cancer indeed provides insight into dysregulated coding and non-coding RNAs, but it does not reveal the mechanisms, such as m6A modifications, that determine post-transcriptional and pre-translational regulations. This study using MeRIP sequencing aims to explain the distribution of m6A modification across altered gene expression and its association with colon cancer. METHODS AND RESULTS The levels of m6A in different colon cancer cell lines were quantified and correlated with the expression of m6A modifiers such as writers, readers, and erasers. Our results showed that global m6A levels in colon cancer were associated with METTL14, YTHDF2, and YTHDC1. We performed Epi-transcriptome profiling of m6A in colon cancer cell lines using Methylated RNA Immunoprecipitation (MeRIP) sequencing. The differential methylation analysis revealed 7312 m6A regions among the colon cancer cell lines. Our findings indicated that the m6A RNA methylation modifications were mainly distributed in the last exonic and 3' untranslated regions. We also discovered that non-coding RNAs such as miRNA, lncRNA, and circRNA carry m6A marks. Gene set enrichment and motif analysis suggested a strong association of m6A with post-transcriptional events, particularly splicing control. Overall, our study sheds light on the potential role of m6A in colon cancer and highlights the importance of further investigation in this area. CONCLUSION This study reports m6A enrichment in the last exonic regions and 3' UTRs of mRNA transcripts in colon cancer. METTL14, YTHDF2, and YTHDC1 were the most significant modifiers in colon cancer cells. The functions of m6A-modified genes were found to be RNA methylation and RNA capping. Overall, the study illustrates the transcriptome-wide distribution of m6A and its eminent role in mRNA splicing and translation control of colon cancer.
Collapse
Affiliation(s)
- Deepa Ramasamy
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | - Megha Thippannah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Meenakumari Balaiah
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
| | | | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India
- Radiation Biology Department, National Centre for Radiation Research & Technology, Egyptian Atomic-Energy Authority, P.O. Box 8029, Cairo, Egypt
| | - Zdenko Herceg
- Epigenomics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anurag Mehta
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India
| | | | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (W.I.A), Chennai, Tamil Nadu, 600036, India.
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre, Sector 5, Rohini, Delhi, 110085, India.
| |
Collapse
|
12
|
Chen H, Zhang M, Li J, Liu M, Cao D, Li YY, Yamashita T, Nio K, Tang H. BMP9-ID1 Pathway Attenuates N 6-Methyladenosine Levels of CyclinD1 to Promote Cell Proliferation in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:981. [PMID: 38256056 PMCID: PMC10816017 DOI: 10.3390/ijms25020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (m6A) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis. Through in vitro experiments utilizing the m6A dot blotting assay, we ascertained that BMP9 reduced the global RNA m6A methylation level in Huh7 and Hep3B cells, thereby facilitating their cell cycle progression. This effect was mediated by an increase in the expression of the inhibitor of DNA-binding protein 1 (ID1). Additionally, using methylated RNA immunoprecipitation qPCR(MeRIP-qPCR), we showed that the BMP9-ID1 pathway promoted CyclinD1 expression by decreasing the m6A methylation level in the 5' UTR of mRNA. This occurred through the upregulation of the fat mass and obesity-associated protein (FTO) in Huh7 and Hep3B cells. In our in vivo mouse xenograft models, we demonstrated that blocking the BMP receptor with LDN-212854 effectively suppressed HCC growth and induced global RNA m6A methylation. Overall, our findings indicate that the BMP9-ID1 pathway promotes HCC cell proliferation by down-regulating the m6A methylation level in the 5' UTR of CyclinD1 mRNA. Targeting the BMP9-ID1 pathway holds promise as a potential therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Shi Q, Chu Q, Zeng Y, Yuan X, Wang J, Zhang Y, Xue C, Li L. Non-coding RNA methylation modifications in hepatocellular carcinoma: interactions and potential implications. Cell Commun Signal 2023; 21:359. [PMID: 38111040 PMCID: PMC10726651 DOI: 10.1186/s12964-023-01357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/14/2023] [Indexed: 12/20/2023] Open
Abstract
RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
14
|
Liu J, Gu X, Guan Z, Huang D, Xing H, Zheng L. Role of m6A modification in regulating the PI3K/AKT signaling pathway in cancer. J Transl Med 2023; 21:774. [PMID: 37915034 PMCID: PMC10619263 DOI: 10.1186/s12967-023-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a crucial role in the pathogenesis of cancer. The dysregulation of this pathway has been linked to the development and initiation of various types of cancer. Recently, epigenetic modifications, particularly N6-methyladenosine (m6A), have been recognized as essential contributors to mRNA-related biological processes and translation. The abnormal expression of m6A modification enzymes has been associated with oncogenesis, tumor progression, and drug resistance. Here, we review the role of m6A modification in regulating the PI3K/AKT pathway in cancer and its implications in the development of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
15
|
Hu J, Lin H, Wang C, Su Q, Cao B. METTL14‑mediated RNA methylation in digestive system tumors. Int J Mol Med 2023; 52:86. [PMID: 37539726 PMCID: PMC10555478 DOI: 10.3892/ijmm.2023.5289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
N6‑methyladenosine (m6A) RNA methylation is one of the most common post‑transcriptional modification mechanism in eukaryotes. m6A is involved in almost all stages of the mRNA life cycle, specifically regulating its stability, splicing, export and translation. Methyltransferase‑like 14 (METTL14) is a particularly important m6A methylation 'writer' that can recognize RNA substrates. METTL14 has been documented to improve the activity and catalytic efficiency of METTL3. However, as individual proteins they can also regulate different biological processes. Malignancies in the digestive system are some of the most common malignancies found in humans, which are typically associated with poor prognoses with limited clinical solutions. METTL14‑mediated methylation has been implicated in both the potentiation and inhibition of digestive system tumor growth, cell invasion and metastasis, in addition to drug resistance. In the present review, the research progress and regulatory mechanisms of METTL14‑mediated methylation in digestive system malignancies were summarized. In addition, future research directions and the potential for its clinical application were examined.
Collapse
Affiliation(s)
- Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cong Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Qiang Su
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
16
|
Ma E, Li J, Shen C, Gu Y, Zhang X, Li L, Zhao J, Wang Z. The m 6A-related gene signature stratifies poor prognosis patients and characterizes immunosuppressive microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1227593. [PMID: 37691948 PMCID: PMC10485364 DOI: 10.3389/fimmu.2023.1227593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of RNA, which can affect RNA metabolism and protein translation. The m6A modification plays a critical role in cancer development, including hepatocellular carcinoma (HCC). Despite several m6A-related signatures in HCC, most of them lack the necessary validation and the reliability is still elusive. Methods Differentially expressed genes (DEGs) in the Cancer Genome Atlas were comprehensively analyzed to identify m6A signature associated with HCC prognosis. Gene set enrichment analysis, tumor mutation burden (TMB), immune infiltration, and therapeutic response were evaluated. Importantly, mass spectrometry proteomics and multiplex immunofluorescence assays were performed for validation. Results The m6A-related protein-coding gene signature was established, which can divide HCC into high-/low-risk subgroups with markedly different overall survival (OS) and clinical stages. Furthermore, we validated its reliability and robustness in our 101 independent HCC specimens using proteomic detection and confirmed that our signature readily identified high-risk HCC patients with 3-year survival rates of 44.1% vs. 71.8% in the low-risk group. Functional analysis indicated that the high-risk group might stimulate the cell cycle and activate oncogenic pathways such as MAPK, mTOR, and VEGF, whereas the low-risk group mainly regulated amino acid, fatty acid, and drug metabolism. Additionally, the high-risk group had more TMB, upregulated immune checkpoint molecule expression, including PD-1, CTLA4, TIM3, and LAG3, and preferentially formed an immunosuppressive microenvironment. Accordingly, potential therapeutic responses showed that high-risk patients were potentially sensitive to inhibitors targeting the cell cycle and MAPK signaling, with patients possibly benefiting from immunotherapy. Moreover, multiplex immunofluorescence assays indicated that high-risk HCC samples displayed distinct immunosuppressive features, with abundant M2-polarized macrophages and T-regulatory cell infiltration. Conclusion The m6A signature had a prominent capacity to evaluate OS and characterize the tumor immune microenvironment of HCC, which may serve as a useful approach for risk stratification management and provide a valuable clue to choosing rational therapeutic strategies.
Collapse
Affiliation(s)
- Ensi Ma
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jianhua Li
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Conghuan Shen
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Yange Gu
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jing Zhao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhengxin Wang
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Bang J, Jun M, Lee S, Moon H, Ro SW. Targeting EGFR/PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma. Pharmaceutics 2023; 15:2130. [PMID: 37631344 PMCID: PMC10458925 DOI: 10.3390/pharmaceutics15082130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant global health concern, with its incidence steadily increasing. The development of HCC is a multifaceted, multi-step process involving alterations in various signaling cascades. In recent years, significant progress has been made in understanding the molecular signaling pathways that play central roles in hepatocarcinogenesis. In particular, the EGFR/PI3K/AKT/mTOR signaling pathway in HCC has garnered renewed attention from both basic and clinical researchers. Preclinical studies in vitro and in vivo have shown the effectiveness of targeting the key components of this signaling pathway in human HCC cells. Thus, targeting these signaling pathways with small molecule inhibitors holds promise as a potential therapeutic option for patients with HCC. In this review, we explore recent advancements in understanding the role of the EGFR/PI3K/AKT/mTOR signaling pathway in HCC and assess the effectiveness of targeting this signaling cascade as a potential strategy for HCC therapy based on preclinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (J.B.); (M.J.); (S.L.); (H.M.)
| |
Collapse
|
18
|
Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m 6A modification in cancer. Nat Rev Clin Oncol 2023; 20:507-526. [PMID: 37221357 DOI: 10.1038/s41571-023-00774-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
N6-Methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNA, has been extensively and increasingly studied over the past decade. Dysregulation of RNA m6A modification and its associated machinery, including writers, erasers and readers, is frequently observed in various cancer types, and the dysregulation profiles might serve as diagnostic, prognostic and/or predictive biomarkers. Dysregulated m6A modifiers have been shown to function as oncoproteins or tumour suppressors with essential roles in cancer initiation, progression, metastasis, metabolism, therapy resistance and immune evasion as well as in cancer stem cell self-renewal and the tumour microenvironment, highlighting the therapeutic potential of targeting the dysregulated m6A machinery for cancer treatment. In this Review, we discuss the mechanisms by which m6A modifiers determine the fate of target RNAs and thereby influence protein expression, molecular pathways and cell phenotypes. We also describe the state-of-the-art methodologies for mapping global m6A epitranscriptomes in cancer. We further summarize discoveries regarding the dysregulation of m6A modifiers and modifications in cancer, their pathological roles, and the underlying molecular mechanisms. Finally, we discuss m6A-related prognostic and predictive molecular biomarkers in cancer as well as the development of small-molecule inhibitors targeting oncogenic m6A modifiers and their activity in preclinical models.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Huilin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
- Gehr Family Center for Leukemia Research & City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA.
| |
Collapse
|
19
|
Wang S, Gao S, Ye W, Li Y, Luan J, Lv X. The emerging importance role of m6A modification in liver disease. Biomed Pharmacother 2023; 162:114669. [PMID: 37037093 DOI: 10.1016/j.biopha.2023.114669] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
N6-methyladenosine (m6A) modification, as one of the most common types of inner RNA modification in eukaryotes, plays a multifunctional role in normal and abnormal biological processes. This type of modification is modulated by m6A writer, eraser and reader, which in turn impact various processes of RNA metabolism, such as RNA processing, translation, nuclear export, localization and decay. The current academic view holds that m6A modification exerts a crucial role in the post-transcriptional modulation of gene expression, and is involved in multiple cellular functions, developmental and disease processes. However, the potential molecular mechanism and specific role of m6A modification in the development of liver disease have not been fully elucidated. In our review, we summarized the latest research progress on m6A modification in liver disease, and explored how these novel findings reshape our knowledge of m6A modulation of RNA metabolism. In addition, we also illustrated the effect of m6A on liver development and regeneration to prompt further exploration of the mechanism and role of m6A modification in liver physiology and pathology, providing new insights and references for the search of potential therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
20
|
Lin C, Li T, Wang Y, Lai S, Huang Y, Guo Z, Zhang X, Weng S. METTL3 enhances pancreatic ductal adenocarcinoma progression and gemcitabine resistance through modifying DDX23 mRNA N6 adenosine methylation. Cell Death Dis 2023; 14:221. [PMID: 36977668 PMCID: PMC10050319 DOI: 10.1038/s41419-023-05715-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The aim of the present study was to clarify the mechanism of how METTL3 regulated pancreatic ductal adenocarcinoma (PDAC) progression by m6A modification of its downstream target mRNA and signaling pathway. Immunoblotting and qRT-PCR assays was employed to determine the expression levels of METTL3. In situ fluorescence hybridization was conducted to localize the cellular distribution of METTL3 and DEAD-box helicase 23 (DDX23). CCK8, colony formation, EDU incorporation, TUNEL, wound healing and Transwell assays were carried out accordingly to study the viability, proliferation, apoptosis, and mobility of cells under different treatments in vitro. Xenograft and animal lung metastasis experiments were also conducted to study the functional role of METTL3 or DDX23 on tumor growth and lung metastasis in vivo. MeRIP-qPCR and bioinformatical analyses were used to obtain the potential direct targets of METTL3. It was shown that m6A methyltransferase METTL3 was upregulated in PDAC tissues with gemcitabine resistance, and its knockdown sensitized pancreatic cancer cells to chemotherapy. Furthermore, silencing METTL3 remarkably reduced pancreatic cancer cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, validation experiments confirmed that DDX23 mRNA was a direct target of METTL3 in YTHDF1-dependent manner. Additionally, DDX23 silence resulted in the suppression of pancreatic cancer cell malignancy and PIAK/Akt signaling inactivation. Strikingly, rescuse experiments demonstrated the inhibitive effects of METTL3 silence on cell phenotypes and gemcitabine resistance were partially reversed by forcibly expressed DDX23. In summary, METTL3 promotes PDAC progression and gemcitabine resistance by modifying DDX23 mRNA m6A methylation and enhancing PI3K/Akt signaling activation. Our findings establish a potential tumor promotive and chemo-resistant role for METTL3/DDX23 axis in PDAC.
Collapse
Affiliation(s)
- Chengjie Lin
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Ting Li
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yan Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Shihui Lai
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yue Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Zhenyun Guo
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Xiang Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China.
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China.
| |
Collapse
|
21
|
Zhao T, Sun D, Xiong W, Man J, Zhang Q, Zhao M, Zhang Z. N 6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130468. [PMID: 36444808 DOI: 10.1016/j.jhazmat.2022.130468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
High-profile RNA epigenetic modification N6-methyladenosine (m6A), as a double-edged sword for cancer, can either promote or inhibit arsenic-induced skin carcinogenesis. However, the core m6A-target gene determining the duality of m6A and the regulatory mechanism of m6A on the core gene are still poorly understood. Based on m6A microarray detection, integrated multi-omics analysis, and further experiments in vitro and in vivo, we explored the molecular basis for the dual role of m6A in cancer induced by environmental pollutants using models in different stages of arsenic carcinogenesis, including As-treated, As-transformed, and As-tumorigenic cell models. We found that the key proliferative signaling node AKT1 is in the center of the m6A-regulatory network in arsenic carcinogenicity. The m6A level on AKT1 mRNA (3'UTR, CDS, and 5'UTR) dynamically changed in different stages of arsenic carcinogenesis. The m6A writer METTL3-catalyzed upregulation of m6A promotes AKT1 expression by elevating m6A reader YTHDF1-mediated AKT1 mRNA stability in As-treated and As-transformed cells, while the m6A eraser FTO-catalyzed downregulation of m6A promotes AKT1 expression mainly by inhibiting m6A reader YTHDF2-mediated AKT1 mRNA degradation in As-tumorigenic cells. Furthermore, upregulation of m6A inhibits the expression of AKT1 negative regulator PHLPP2 and promotes the expression of AKT1 positive regulator PDK1. These changes in AKT1 regulators result in AKT1 activation by upregulating AKT1 phosphorylation at S473 and T308. Interestingly, the FTO-catalyzed decrease in m6A prevents AKT upregulation in As-treated cells but promotes AKT upregulation in As-tumorigenic cells. Both inhibitors targeting the m6A writer and eraser can inhibit the AKT1-mediated proliferation of As-tumorigenic cells by breaking the balance of m6A regulators. Our results demonstrated that AKT1 is the core hub determining m6A as a double-edged sword. Changed m6A dynamically upregulates the expression and activity of AKT1 in different stages of arsenic carcinogenesis. This study can advance our understanding of the dual role and precise time-specific mechanism of RNA epigenetics involved in the carcinogenesis of hazardous materials.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiao Xiong
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Zhao J, Xu H, Su Y, Pan J, Xie S, Xu J, Qin L. Emerging Regulatory Mechanisms of N 6-Methyladenosine Modification in Cancer Metastasis. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:83-100. [PMID: 36939763 PMCID: PMC9883376 DOI: 10.1007/s43657-021-00043-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is the major cause of cancer-related deaths and accounts for poor therapeutic outcomes. A metastatic cascade is a series of complicated biological processes. N6-methyladenosine (m6A) is the most abundant and conserved epitranscriptomic modification in eukaryotic cells, which has great impacts on RNA production and metabolism, including RNA splicing, processing, degradation and translation. Accumulating evidence demonstrates that m6A plays a critical role in regulating cancer metastasis. However, there is a lack of studies that review the recent advances of m6A in cancer metastasis. Here, we systematically retrieved the functions and mechanisms of how the m6A axis regulates metastasis, and especially summarized the organ-specific liver, lung and brain metastasis mediated by m6A in various cancers. Moreover, we discussed the potential application of m6A modification in cancer diagnosis and therapy, as well as the present limitations and future perspectives of m6A in cancer metastasis. This review provides a comprehensive knowledge on the m6A-mediated regulation of gene expression, which is helpful to extensively understand the complexity of cancer metastasis from a new epitranscriptomic point of view and shed light on the developing novel strategies to anti-metastasis based on m6A alteration.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Hao Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Yinghan Su
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Sunzhe Xie
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040 China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200120 China
| |
Collapse
|
23
|
Integrated investigation of the clinical implications and targeted landscape for RNA methylation modifications in hepatocellular carcinoma. Eur J Med Res 2023; 28:46. [PMID: 36707911 PMCID: PMC9881284 DOI: 10.1186/s40001-023-01016-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND RNA methylation (RM) is a crucial post-translational modification (PTM) that directs epigenetic regulation. It mostly consists of N1-methyladenosine (m1A), 5-methylcytosine (m5C), N3-methylcytidine (m3C), N6-methyladenosine (m6A), and 2'-O-methylation (Nm). The "writers" mainly act as intermediaries between these modifications and associated biological processes. However, little is known about the interactions and potential functions of these RM writers in hepatocellular carcinoma (HCC). METHODS The expression properties and genetic alterations of 38 RM writers were assessed in HCC samples from five bioinformatic datasets. Two patterns associated with RM writers were identified using consensus clustering. Then, utilizing differentially expressed genes (DEGs) from different RM subtypes, we built a risk model called RM_Score. Additionally, we investigated the correlation of RM_Score with clinical characteristics, tumor microenvironment (TME) infiltration, molecular subtypes, therapeutic response, immunotherapy effectiveness, and competing endogenous RNA (ceRNA) network. RESULTS RM writers were correlated with TME cell infiltration and prognosis. Cluster_1/2 and gene.cluster_A/B were shown to be capable of distinguishing the HCC patients with poor prognosis after consensus and unsupervised clustering of RNA methylation writers. Additionally, we constructed RNA modification pattern-specific risk model and subdivided the cases into RM_Score high and RM_Score low subgroups. In individual cohorts or merged datasets, the high RM_Score was related to a worse overall survival of HCC patients. RM_Score also exhibited correlations with immune and proliferation related pathways. In response to anti-cancer treatments, the RM_Score had a negative correlation (drug sensitive) with drugs that focused on the MAPK/ERK and metabolism signaling, and a positive correlation (drug resistant) with compounds targeting RKT and PI3K/mTOR signaling pathway. Notably, the RM_Score was connected to the therapeutic effectiveness of PD-L1 blockage, implying that RM writers may be the target of immunotherapy to optimize clinical outcomes. Additionally, a ceRNA network was generated including 2 lncRNAs, 4 miRNAs, and 7 mRNAs that was connected to RM writers. CONCLUSIONS We thoroughly investigated the potential functions of RNA methylation writers and established an RM_patterns-based risk model for HCC patients. This study emphasized the critical functions of RM modification in TME infiltration, targeted therapy, and immunotherapy, providing potential targets for HCC.
Collapse
|
24
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
25
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle 2023; 22:100-116. [PMID: 35949109 PMCID: PMC9769451 DOI: 10.1080/15384101.2022.2109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The aim is to explore the underlying mechanism of basic leucine zipper ATF-like transcription factor 2 (BATF2) in tongue squamous cell carcinoma (TSCC). The expression of BATF2 in TSCC tissues and corresponding adjacent normal TSCC tissues, human TSCC cell lines (SCC-15 and CAL-27) and human normal tongue epithelial cells NTEC was detected. Then, SCC-15 cells with stable BATF2 knockdown and CAL-27 cells with BATF2 overexpression were established to investigate the functional effect of BATF2 on TSCC. Thereafter, the effect of BATF2 on TSCC angiogenesis and BATF2 m6A methylation was also examined. BATF2 was significantly downregulated in TSCC tissues and cell lines, and BATF2 overexpression could suppress growth, metastasis and angiogenesis of TSCC. Mechanistically, vascular endothelial growth factor A (VEGFA) was identified as a downstream gene of BATF2, and it was confirmed that BATF2 suppressed growth, metastasis and angiogenesis of TSCC via inhibiting VEGFA. In addition, the N6-methyladenosine (m6A) modification of BATF2 mRNA mediated by METTL14 suppressed its expression in TSCC. METTL14/BATF2 axis could serve as a novel promising therapeutic candidate against angiogenesis for TSCC.
Collapse
Affiliation(s)
- Haojie Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Jinyong Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Yi Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Minhua Hou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Juan Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The First People’s Hospital of Chenzhou (Affiliated Chenzhou Hospital, Southern Medical University), Chenzhou, Hunan, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| |
Collapse
|
27
|
Wang L, Yi X, Xiao X, Zheng Q, Ma L, Li B. Exosomal miR-628-5p from M1 polarized macrophages hinders m6A modification of circFUT8 to suppress hepatocellular carcinoma progression. Cell Mol Biol Lett 2022; 27:106. [PMID: 36474147 PMCID: PMC9724320 DOI: 10.1186/s11658-022-00406-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver cancer. CircFUT8 has been shown to be upregulated in cancers, but its function in HCC remains unclear. Tumor-associated macrophages (TAMs) are one of the main components of the tumor microenvironment (TME), and M1 macrophages function as tumor suppressors in cancers. Exosomes exert an important role in the TME, and circRNAs can be modified by m6A. We investigated the function of circFUT8 in HCC and its interaction with exosomes, M1 macrophages, and m6A. METHODS CircFUT8 expression was detected in HCC cells, and its effects on HCC cell growth were verified through functional assays. Mechanism assays including RNA pull down, RNA-binding protein immunoprecipitation (RIP), and luciferase reporter assays were undertaken to verify how circFUT8 may interact with miR-628-5p, and how these molecules may modulate HCC cell malignancy via interacting with exosomes and macrophages. RESULTS CircFUT8 was upregulated in HCC cells and it accelerated HCC cell growth. Exosomes derived from M1 macrophages transferred miR-628-5p to HCC cells to inhibit human methyltransferase-like 14 (METTL14) expression. METTL14 promoted circFUT8 m6A modification and facilitated its nuclear export to the cytoplasm, where M1 macrophages regulated the circFUT8/miR-552-3p/CHMP4B pathway, thereby suppressing HCC progression. CONCLUSION M1 macrophages-derived exosomal miR-628-5p inhibited the m6A modification of circFUT8, inhibiting HCC development.
Collapse
Affiliation(s)
- Liyan Wang
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| | - Xiaoyuan Yi
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| | - Xuhua Xiao
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| | - Qinghua Zheng
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| | - Lei Ma
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| | - Bin Li
- grid.452806.d0000 0004 1758 1729Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001 Guangxi China
| |
Collapse
|
28
|
FMR1 promotes the progression of colorectal cancer cell by stabilizing EGFR mRNA in an m 6A-dependent manner. Cell Death Dis 2022; 13:941. [PMID: 36347844 PMCID: PMC9643526 DOI: 10.1038/s41419-022-05391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
FMR1, a new m6A reader, is known to be involved in the regulation of cancer progression. However, its role, regulatory mechanism, and clinical significance in colorectal cancer (CRC) are elusive. Here, we showed that FMR1 was upregulated in CRC, and it promoted proliferation and metastasis of CRC cells in vitro and in vivo. Mechanically, FMR1 recognized the m6A-modification site in EGFR mRNA, a key molecule in cancer occurrence and targeted therapy, sustained its stability and maintained its expression in an m6A-dependent manner, thereby promoting the tumorigenesis and metastasis of CRC. And the effect of FMR1 knockdown in CRC cells could be abolished by METTL3. Furthermore, FMR1 shRNA plasmid carried by attenuated Salmonella has an effective anti-tumor effect in vivo. Collectively, we identified the METTL3/FMR1/EGFR axis in the progression of CRC. This novel mechanism indicated that the METTL3/FMR1/EGFR axis is a potential target for early therapeutic intervention in CRC progression.
Collapse
|
29
|
Xie X, Liang H, Ruan Q, Ma X, Xie C, Luo Z, Tang L, Cheng L, Wang T. Comprehensive analysis of N6-methyladenosine-related lncRNAs reveals distinct hepatocellular carcinoma subtypes with immunotherapeutic implications. Am J Transl Res 2022; 14:6504-6520. [PMID: 36247272 PMCID: PMC9556473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Accumulating studies have demonstrated critical roles of N6-methyladenosine (m6A) modification and long noncoding RNAs (lncRNAs) in the biological processes leading to occurrence, development and chemoresistance of cancers. However, the specific identities and functional roles of lncRNAs associated with m6A modification in hepatocellular carcinoma (HCC) remain elusive. In this study, eighty-two prognostic m6A-related lncRNAs (m6A-LncRNAs) were identified in HCC datasets. Patients with HCC were classified into three subtypes (C1, C2 and C3) based on the expression of the m6A-LncRNAs. The three subtypes showed significant differences in clinical features, immune and stromal infiltration signatures, and immunotherapy sensitivity. Subclass C1 was notable for high immune and stromal cell infiltration and active immune responses, low serum α-fetoprotein (AFP) levels and high sensitivity to immune checkpoint inhibitors (ICIs). Subclass C2 showed high metabolic activities and absence of immune infiltration with favorable prognosis. Subclass C3 was associated with an exhausted immune environment, high serum AFP and poor prognosis. Notably, subclass C3 displayed high expression of immune checkpoints but failed to respond to ICIs. Finally, 12 m6A-LncRNA signatures were identified for HCC classification and validated in an external dataset. This integrated analysis indicated that the interactions between m6A methylation and lncRNAs are involved in immune and stromal cell infiltration in HCC, and may provide novel insights into precision diagnostics as well as therapeutics for HCC patients.
Collapse
Affiliation(s)
- Xiaodong Xie
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Hongyin Liang
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Qing Ruan
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Xiao Ma
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Chuan Xie
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Zhulin Luo
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Lijun Tang
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Long Cheng
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| | - Tao Wang
- Department of General Surgery, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
- Department of General Surgery and Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command (Chengdu Military General Hospital)Chengdu 610083, Sichuan Province, China
| |
Collapse
|
30
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
31
|
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022; 21:163. [PMID: 35974338 PMCID: PMC9380308 DOI: 10.1186/s12943-022-01634-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. Emerging evidences indicate that N6-methyladenosine (m6A), the most abundant post-transcriptional modification in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, and translation. As the key component of the m6A methyltransferase complex, methyltransferase-like 14 (METTL14) catalyzes m6A methylation on mRNA or non-coding RNA to regulate gene expression and cell phenotypes. Dysregulation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical applications and propose the research forecast.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Wei-Wei Liu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ke Yang
- School of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Heifei, China.
| |
Collapse
|
32
|
Fang Z, Mei W, Qu C, Lu J, Shang L, Cao F, Li F. Role of m6A writers, erasers and readers in cancer. Exp Hematol Oncol 2022; 11:45. [PMID: 35945641 PMCID: PMC9361621 DOI: 10.1186/s40164-022-00298-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023] Open
Abstract
The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metastasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of m6A to cancer progression and look forward to describe future research directions.
Collapse
Affiliation(s)
- Zhen Fang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chang Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Li J, Wang R, Shi W, Chen X, Yi J, Yang X, Jin S. Epigenetic regulation in radiation-induced pulmonary fibrosis. Int J Radiat Biol 2022; 99:384-395. [PMID: 35895014 DOI: 10.1080/09553002.2022.2089365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a common and serious adverse effect of radiotherapy for thoracic tumors, which occurs in the irreversible stage of radiation-induced lung injury (RILI) >6 months after irradiation. It is characterized by progressive and irreversible destruction of lung tissue and deterioration of lung function, which may impair quality of life and lead to respiratory failure and death. We hope this will draw attention to the involvement of epigenetics in the regulation of RIPF. CONCLUSIONS This review summarizes research progress on the role and mechanism of DNA methylation, noncoding RNA and RNA methylation in RIPF or RILI, and the possible role and mechanism of histone modification in RIPF. We have noticed that in tissue fibrosis, the epigenetic regulation mechanisms inside and outside the nucleus can influence each other. We speculate that RIPF may be regulated by an epigenetic regulatory network during its development, and believe that TGF-β, SNAIL, PTEN and EZH2 are four targets worthy of in-depth study.
Collapse
Affiliation(s)
- Jiale Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Rui Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wen Shi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiaoyi Chen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xiangshan Yang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
34
|
Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m 6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022; 18:4432-4451. [PMID: 35864970 PMCID: PMC9295064 DOI: 10.7150/ijbs.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/12/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has revealed that m6A modification, the predominant RNA modification in eukaryotes, adds a novel layer of regulation to the gene expression. Dynamic and reversible m6A modification implements sophisticated and crucial functions in RNA metabolism, including generation, splicing, stability, and translation in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Furthermore, m6A modification plays a determining role in producing various m6A-labeling RNA outcomes, thereby affecting several functional processes, including tumorigenesis and progression. Herein, we highlighted current advances in m6A modification and the regulatory mechanisms underlying mRNAs and ncRNAs in distinct cancer stages. Meanwhile, we also focused on the therapeutic significance of m6A regulators in clinical cancer treatment.
Collapse
Affiliation(s)
- Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
35
|
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, Wang Z, Zhu X. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 2022; 30:2342-2353. [PMID: 35192934 PMCID: PMC9171149 DOI: 10.1016/j.ymthe.2022.02.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N6-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xue Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kaifang Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Chun Gu
- Department of Hepatobiliary & Pancreatic Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Hepatobiliary & Pancreatic Center, Chinese Academy of Medical Sciences and Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Ziyan Wang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.
| |
Collapse
|
36
|
Chen Z, Hu Y, Jin L, Yang F, Ding H, Zhang L, Li L, Pan T. The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Front Pharmacol 2022; 13:873030. [PMID: 35462896 PMCID: PMC9022635 DOI: 10.3389/fphar.2022.873030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation has been considered the most prevalent, abundant, and conserved internal transcriptional modification throughout the eukaryotic mRNAs. Typically, m6A RNA methylation is catalyzed by the RNA methyltransferases (writers), is removed by its demethylases (erasers), and interacts with m6A-binding proteins (readers). Accumulating evidence shows that abnormal changes in the m6A levels of these regulators are increasingly associated with human tumorigenesis and drug resistance. However, the molecular mechanisms underlying m6A RNA methylation in tumor occurrence and development have not been comprehensively clarified. We reviewed the recent findings on biological regulation of m6A RNA methylation and summarized its potential therapeutic strategies in various human cancers.
Collapse
Affiliation(s)
- Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Le Jin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Fan Yang
- Department of Clinical Medical, The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Haiwen Ding
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lili Li
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Pan
- Department of General Surgery, Diagnosis and Therapy Center of Thyroid and Breast, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
37
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
38
|
Xu Y, Zhang M, Zhang Q, Yu X, Sun Z, He Y, Guo W. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol 2021; 9:767668. [PMID: 34917614 PMCID: PMC8671007 DOI: 10.3389/fcell.2021.767668] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
39
|
Liu X, Du Y, Huang Z, Qin H, Chen J, Zhao Y. Insights into roles of METTL14 in tumors. Cell Prolif 2021; 55:e13168. [PMID: 34904301 PMCID: PMC8780950 DOI: 10.1111/cpr.13168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
N6-Methyladenosine (m6A) is considered the most common and endogenous modification of eukaryotic RNAs. Highly conserved in many species, m6A regulates RNA metabolism, cell differentiation, cell circadian rhythm, and cell cycle; it also responds to endogenous and exogenous stimuli and is associated with the development of tumors. The m6A methyltransferase complex (MTC) regulates the m6A modification of transcripts and involves two components, methyltransferase-like enzyme 3 (METTL3) and methyltransferase-like enzyme 14 (METTL14), and other auxiliary regulatory distinct components. Though with no catalytic effect, METTL14 serves as an RNA-binding scaffold in MTC, promotes RNA substrate recognition, activates, and escalates the catalytic capability of METTL3, thus accounting for a pivotal member of the complex. It was reported that METTL14 regulates tumor proliferation, metastasis, and self-renewal, and plays a part in tumorigenesis, tumor progression, and other processes. The present work is a review of the role of METTL14 both as a tumor suppressor and a tumor promoter in the oncogenesis and progression of various tumors, as well as the potential molecular mechanisms.
Collapse
Affiliation(s)
- Xin Liu
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenghao Huang
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honglei Qin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingwen Chen
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
41
|
Dolicka D, Foti M, Sobolewski C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22179428. [PMID: 34502337 PMCID: PMC8430939 DOI: 10.3390/ijms22179428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are small membrane-free cytosolic liquid-phase ordered entities in which mRNAs are protected and translationally silenced during cellular adaptation to harmful conditions (e.g., hypoxia, oxidative stress). This function is achieved by structural and functional SG components such as scaffold proteins and RNA-binding proteins controlling the fate of mRNAs. Increasing evidence indicates that the capacity of cells to assemble/disassemble functional SGs may significantly impact the onset and the development of metabolic and inflammatory diseases, as well as cancers. In the liver, the abnormal expression of SG components and formation of SG occur with chronic liver diseases, hepatocellular carcinoma (HCC), and selective hepatic resistance to anti-cancer drugs. Although, the role of SG in these diseases is still debated, the modulation of SG assembly/disassembly or targeting the expression/activity of specific SG components may represent appealing strategies to treat hepatic disorders and potentially cancer. In this review, we discuss our current knowledge about pathophysiological functions of SGs in HCC as well as available molecular tools and drugs capable of modulating SG formation and functions for therapeutic purposes.
Collapse
|
42
|
Qin S, Mao Y, Chen X, Xiao J, Qin Y, Zhao L. The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. Int J Biol Sci 2021; 17:3059-3079. [PMID: 34421350 PMCID: PMC8375232 DOI: 10.7150/ijbs.62767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC has high rates of death and recurrence, as well as very low survival rates. N6-methyladenosine (m6A) is the most abundant modification in eukaryotic RNAs, and circRNAs are a class of circular noncoding RNAs that are generated by back-splicing and they modulate multiple functions in a variety of cellular processes. Although the carcinogenesis of HCC is complex, emerging evidence has indicated that m6A modification and circRNA play vital roles in HCC development and progression. However, the underlying mechanisms governing HCC, their cross-talk, and clinical implications have not been fully elucidated. Therefore, in this paper, we elucidated the biological functions and molecular mechanisms of m6A modification in the carcinogenesis of HCC by illustrating three different regulatory factors ("writer", "eraser", and "reader") of the m6A modification process. Additionally, we dissected the functional roles of circRNAs in various malignant behaviors of HCC, thereby contributing to HCC initiation, progression and relapse. Furthermore, we demonstrated the cross-talk and interplay between m6A modification and circRNA by revealing the effects of the collaboration of circRNA and m6A modification on HCC progression. Finally, we proposed the clinical potential and implications of m6A modifiers and circRNAs as diagnostic biomarkers and therapeutic targets for HCC diagnosis, treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Wang A, Chen X, Li D, Yang L, Jiang J. METTL3-mediated m6A methylation of ASPM drives hepatocellular carcinoma cells growth and metastasis. J Clin Lab Anal 2021; 35:e23931. [PMID: 34398984 PMCID: PMC8418466 DOI: 10.1002/jcla.23931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Abnormal spindle‐like microcephaly (ASPM) has been proved to participate in tumor progression. However, the underlying mechanism of ASPM in liver hepatocellular carcinoma (LIHC) remains elusive. Methods The mRNA and protein expression were determined using Western blot and qRT‐PCR, and the capacities of cells proliferation, migration, and invasion were evaluated by CCK‐8, colony formation, wound healing, and transwell. MeRIP was performed to validate the interaction between ASPM and methyltransferase‐like 3 (METTL3). Results Herein, we found that ASPM was significantly upregulated in LIHC, and the high expression of ASPM was associated with poor LIHC prognosis. Furthermore, ASPM knockdown could suppress LIHC cells proliferation, migration, and invasion, while ASPM overexpression exerted reverse effect. Mechanistically, we revealed that the N6‐methyladenosine (m6A) modification of ASPM mRNA mediated by METTL3 promoted its expression in LIHC. More importantly, silencing METTL3 suppressed LIHC cells proliferation, migration, and invasion, which could be retained by ASPM overexpression. Conclusion Collectively, our findings suggested that METTL3/ASPM axis could serve as a novel promising therapeutic candidate for LIHC.
Collapse
Affiliation(s)
- An Wang
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Xiaofeng Chen
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Dongen Li
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Liang Yang
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| | - Jianshuai Jiang
- Department of General Surgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
44
|
Yao Q, He L, Gao X, Tang N, Lin L, Yu X, Wang D. The m6A Methyltransferase METTL14-Mediated N6-Methyladenosine Modification of PTEN mRNA Inhibits Tumor Growth and Metastasis in Stomach Adenocarcinoma. Front Oncol 2021; 11:699749. [PMID: 34476213 PMCID: PMC8406853 DOI: 10.3389/fonc.2021.699749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a common reason for tumor-related fatalities globally, as it results in distant metastasis. Methyltransferase-like 14 (METTL14), a notable RNA N6-adenosine methyltransferase (m6A), plays a significant role in the growth of tumor through controlling the RNA working. This study aims to highlight METTL14 in STAD's biological function and molecular mechanism. METHODS Bioinformatics and immunohistochemical (IHC) assays have been utilized for the detection of METTL14 expression in the STAD. METTL14's biological function has been shown while making use of HGC-27 and AGS cells in vitro experiments. MeRIP-qPCR and luciferase reporter assays were employed for the exploration of METTL14's mechanism modifying the target of phosphatase and tensin homologue (PTEN). Subcutaneous xeno transplantation model and STAD liver metastasis orthotopic tumor model were used to study METTL14 in STAD in vivo. RESULTS METTL14 expression was substantially downregulated in STAD reflecting contribution to major tumors, progressed TNM stage as well as poor overall survival (OS) in STAD. Moreover, METTL14's inhibition of STAD cells proliferation, migration and invasion has been verified in vitro assays. Furthermore, an identification of PTEN being METTL14-mediated m6A modification's substrate has been made. METTL14's overexpression highly enhanced PTEN mRNA m6A variation, stabilized PTEN mRNA and increased protein expression. Further, it has been found out that METTL14-mediated STAD cells inhibition of proliferation and invasion dependent on PTEN. At last, we demonstrated that METTL14 inhibit STAD growth and metastasis in vivo models. CONCLUSIONS METTL14 inhibits tumor growth and metastasis of STAD via stabilization of PTEN mRNA expression. Therefore, METTL14 is a potential biomarker of prognosis and therapeutic targets for STAD.
Collapse
Affiliation(s)
- Qi Yao
- Department of Anorectal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of Anorectal Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lanzhen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xucan Gao
- Department of Anorectal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of Anorectal Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Na Tang
- Department of Pathology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of Pathology, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lifen Lin
- Department of Anorectal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of Anorectal Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xiaofang Yu
- Department of General Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of General Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Dong Wang
- Department of Anorectal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- Department of Anorectal Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
45
|
Zhou H, Yin K, Zhang Y, Tian J, Wang S. The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochim Biophys Acta Rev Cancer 2021; 1876:188609. [PMID: 34375716 DOI: 10.1016/j.bbcan.2021.188609] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant and diverse epigenetic modification of mRNAs in eukaryotes, and it regulates biological metabolism, cell differentiation and cycles, and responses to heat shock stress, cancers and other diseases. RNA methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14) and other proteins possessing methyltransferase (MTase) capability including Wilms tumor 1-associated protein (WTAP), RNA-binding motif protein 15(RBM15), KIAA 1429 and zinc finger CCCH-type containing 13 (ZC3H13) constitute the m6A writer complex. Although METTL3 is the catalytic subunit, its activity is strongly dependent on METTL14, which is crucial in maintaining complex integrity and recognizing special RNA substrates. Currently, the roles of m6A modification in cancers are being extensively reviewed. The critical functions of METTL14 in the occurrence and development of a variety of cancers as well as the potential targeting of METTL14 as a cancer treatment have not yet been highlighted. Therefore, in this review, we summarize the m6A modification and focus on the structure and functions of METTL14 as well as its roles in oncogenesis, metastasis progression, treatment and prognosis in cancer.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Yue Zhang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
46
|
Li J, Wang W, Zhou Y, Liu L, Zhang G, Guan K, Cui X, Liu X, Huang M, Cui G, Sun R. m6A Regulator-Associated Modification Patterns and Immune Infiltration of the Tumor Microenvironment in Hepatocarcinoma. Front Cell Dev Biol 2021; 9:687756. [PMID: 34277630 PMCID: PMC8283020 DOI: 10.3389/fcell.2021.687756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Immunotherapy elicits durable responses in many tumors. Nevertheless, the positive response to immunotherapy always depends on the dynamic interactions between the tumor cells and infiltrating lymphocytes in the tumor microenvironment (TME). Currently, the application of immunotherapy in hepatocellular carcinoma (HCC) has achieved limited success. The ectopic modification of N6-methyladenosine (m6A) is a common feature in multiple tumors. However, the relationship between m6A modification with HCC clinical features, prognosis, immune cell infiltration, and immunotherapy efficacy remains unclear. Materials and Methods: Here, we comprehensively evaluated m6A modification clusters based on 22 m6A regulators and systematically explored the relationship between m6A modification with tumor progression, prognosis, and immune cell infiltration characteristics. The m6Ascore was calculated by principal component analysis to quantify the m6A modifications of individual patients. Key regulators involved in immunoregulation in HCC were identified using immunohistochemistry and immunofluorescence. Results: Three distinct m6A modification clusters were identified. The m6A clusters were significantly associated with clinical features, prognosis, and immune cell infiltration. The three clusters were highly consistent with the three tumor immune phenotypes, i.e., immune-excluded, immune-inflamed, and immune-desert. Comprehensive bioinformatics analysis revealed that high m6Ascore was closely associated with tumor progression, poor prognosis, and immunotherapy non-response. m6A regulators were dysregulated in HCC tissues. Hence, they play a role as predictors of poor prognosis. Tissue microarray demonstrated that overexpressed YTHDF1 was associated with low CD3+ and CD8+ T cell infiltration in HCC. Conclusion: Our findings demonstrate that m6A modification patterns play a crucial role in the tumor immune microenvironment and the prognosis of HCC. High YTHDF1 expression is closely associated with low CD3+ and CD8+ T cell infiltration in HCC.
Collapse
Affiliation(s)
- Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yubing Zhou
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guizhen Zhang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maoxin Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Pan F, Lin XR, Hao LP, Chu XY, Wan HJ, Wang R. The Role of RNA Methyltransferase METTL3 in Hepatocellular Carcinoma: Results and Perspectives. Front Cell Dev Biol 2021; 9:674919. [PMID: 34046411 PMCID: PMC8144501 DOI: 10.3389/fcell.2021.674919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 6th most prevalent cancer and the 4th leading cause of cancer-related death worldwide. Mechanisms explaining the carcinogenesis of HCC are not clear yet. In recent years, rapid development of N6-methyladenosine (m6A) modification provides a fresh approach to disclosing this mystery. As the most prevalent mRNA modification in eukaryotes, m6A modification is capable to post-transcriptionally affect RNA splicing, stability, and translation, thus participating in a variety of biological and pathological processes including cell proliferation, apoptosis, tumor invasion and metastasis. METTL3 has been recognized as a pivotal methyltransferase and essential to the performance of m6A modification. METTL3 can regulate RNA expression in a m6A-dependent manner and contribute to the carcinogenesis, tumor progression, and drug resistance of HCC. In the present review, we are going to make a clear summary of the known roles of METTL3 in HCC, and explicitly narrate the potential mechanisms for these roles.
Collapse
Affiliation(s)
- Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xin-Rong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li-Ping Hao
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Yuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hai-Jun Wan
- Department of Gastroenterology and Hepatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|