1
|
Zhang J, Zhang X, Zhong Y, Wang J, Zhong C, Xiao M, Chen Y, Zhang H. PET radiomics for histologic subtype classification of non-small cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07069-6. [PMID: 39794511 DOI: 10.1007/s00259-025-07069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
PURPOSE To systematically review the literature and perform a meta-analysis of PET radiomics for histologic subtype classification in non-small cell lung cancer (NSCLC). METHODS PubMed, Embase, Scopus, and Web of Science databases were systematically searched in English on human subjects for studies on distinguishing adenocarcinoma (ADC) from squamous cell carcinoma (SCC) using PET radiomics published from inception until November 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) were utilized to assess the methodological quality of the included studies. The area under the receiver operating characteristic curves (AUC) was pooled to estimate predictive performance. An overall effect size was estimated using a random-effects model. Statistical heterogeneity was evaluated by the I2 value. Subgroup analyses were conducted to explore sources of heterogeneity. RESULTS Twelve studies were included in the analysis, yielding a pooled AUC of 0.92 (95% confidence interval [CI]: 0.89-0.94). Despite this promising result, the studies showed limitations in both study design and methodological quality, as evidenced by a median RQS of 11/36. A significant degree of heterogeneity was observed among the studies, with an I2 of 92.20% (95% CI: 89.01-95.39) for sensitivity and 89.29% (95% CI: 84.48-94.10) for specificity. CONCLUSIONS This meta-analysis highlights the potential utility of PET radiomics in distinguishing ADC from SCC. However, the observed high heterogeneity indicates substantial methodological variability across the included studies. Future research should focus on standardization, transparency, and multicenter collaborations to improve the reliability and clinical applicability of PET radiomics for histologic subtype classification in NSCLC.
Collapse
Affiliation(s)
- Jucheng Zhang
- Department of Clinical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Chao Zhong
- Department of Radiology, Ningbo Yinzhou NO.2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Meiling Xiao
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuhan Chen
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Institute of Nuclear Medicine and Molecular, Imaging of Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
2
|
Wang J, Zhang Z, Wang Y. Utilizing Feature Selection Techniques for AI-Driven Tumor Subtype Classification: Enhancing Precision in Cancer Diagnostics. Biomolecules 2025; 15:81. [PMID: 39858475 PMCID: PMC11763904 DOI: 10.3390/biom15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer's heterogeneity presents significant challenges in accurate diagnosis and effective treatment, including the complexity of identifying tumor subtypes and their diverse biological behaviors. This review examines how feature selection techniques address these challenges by improving the interpretability and performance of machine learning (ML) models in high-dimensional datasets. Feature selection methods-such as filter, wrapper, and embedded techniques-play a critical role in enhancing the precision of cancer diagnostics by identifying relevant biomarkers. The integration of multi-omics data and ML algorithms facilitates a more comprehensive understanding of tumor heterogeneity, advancing both diagnostics and personalized therapies. However, challenges such as ensuring data quality, mitigating overfitting, and addressing scalability remain critical limitations of these methods. Artificial intelligence (AI)-powered feature selection offers promising solutions to these issues by automating and refining the feature extraction process. This review highlights the transformative potential of these approaches while emphasizing future directions, including the incorporation of deep learning (DL) models and integrative multi-omics strategies for more robust and reproducible findings.
Collapse
Affiliation(s)
- Jihan Wang
- Yan’an Medical College of Yan’an University, Yan’an 716000, China
| | - Zhengxiang Zhang
- Yan’an Medical College of Yan’an University, Yan’an 716000, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
3
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
4
|
Shi L, Zhao J, Wei Z, Wu H, Sheng M. Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: a systematic review and meta-analysis. Front Oncol 2024; 14:1381217. [PMID: 39381037 PMCID: PMC11458374 DOI: 10.3389/fonc.2024.1381217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives The aim of this study was to systematically review the studies on radiomics models in distinguishing between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and evaluate the classification performance of radiomics models using images from various imaging techniques. Materials and methods PubMed, Embase and Web of Science Core Collection were utilized to search for radiomics studies that differentiate between LUAD and LUSC. The assessment of the quality of studies included utilized the improved Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS). Meta-analysis was conducted to assess the classification performance of radiomics models using various imaging techniques. Results The qualitative analysis included 40 studies, while the quantitative synthesis included 21 studies. Median RQS for 40 studies was 12 (range -5~19). Sixteen studies were deemed to have a low risk of bias and low concerns regarding applicability. The radiomics model based on CT images had a pooled sensitivity of 0.78 (95%CI: 0.71~0.83), specificity of 0.85 (95%CI:0.73~0.92), and the area under summary receiver operating characteristic curve (SROC-AUC) of 0.86 (95%CI:0.82~0.89). As for PET images, the pooled sensitivity was 0.80 (95%CI: 0.61~0.91), specificity was 0.77 (95%CI: 0.60~0.88), and the SROC-AUC was 0.85 (95%CI: 0.82~0.88). PET/CT images had a pooled sensitivity of 0.87 (95%CI: 0.72~0.94), specificity of 0.88 (95%CI: 0.80~0.93), and an SROC-AUC of 0.93 (95%CI: 0.91~0.95). MRI images had a pooled sensitivity of 0.73 (95%CI: 0.61~0.82), specificity of 0.80 (95%CI: 0.65~0.90), and an SROC-AUC of 0.79 (95%CI: 0.75~0.82). Conclusion Radiomics models demonstrate potential in distinguishing between LUAD and LUSC. Nevertheless, it is crucial to conduct a well-designed and powered prospective radiomics studies to establish their credibility in clinical application. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=412851, identifier CRD42023412851.
Collapse
Affiliation(s)
- Lili Shi
- Medical School, Nantong University, Nantong, China
| | - Jinli Zhao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhichao Wei
- Medical School, Nantong University, Nantong, China
| | - Huiqun Wu
- Medical School, Nantong University, Nantong, China
| | - Meihong Sheng
- Department of Radiology, The Second Affiliated Hospital of Nantong University and Nantong First People’s Hospital, Nantong, China
| |
Collapse
|
5
|
Stefano A. Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research. Comput Biol Med 2024; 179:108827. [PMID: 38964244 DOI: 10.1016/j.compbiomed.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
| |
Collapse
|
6
|
Tang X, Wu F, Chen X, Ye S, Ding Z. Current status and prospect of PET-related imaging radiomics in lung cancer. Front Oncol 2023; 13:1297674. [PMID: 38164195 PMCID: PMC10757959 DOI: 10.3389/fonc.2023.1297674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is highly aggressive, which has a high mortality rate. Major types encompass lung adenocarcinoma, lung squamous cell carcinoma, lung adenosquamous carcinoma, small cell carcinoma, and large cell carcinoma. Lung adenocarcinoma and lung squamous cell carcinoma together account for more than 80% of cases. Diverse subtypes demand distinct treatment approaches. The application of precision medicine necessitates prompt and accurate evaluation of treatment effectiveness, contributing to the improvement of treatment strategies and outcomes. Medical imaging is crucial in the diagnosis and management of lung cancer, with techniques such as fluoroscopy, computed radiography (CR), digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)/CT, and PET/MRI being essential tools. The surge of radiomics in recent times offers fresh promise for cancer diagnosis and treatment. In particular, PET/CT and PET/MRI radiomics, extensively studied in lung cancer research, have made advancements in diagnosing the disease, evaluating metastasis, predicting molecular subtypes, and forecasting patient prognosis. While conventional imaging methods continue to play a primary role in diagnosis and assessment, PET/CT and PET/MRI radiomics simultaneously provide detailed morphological and functional information. This has significant clinical potential value, offering advantages for lung cancer diagnosis and treatment. Hence, this manuscript provides a review of the latest developments in PET-related radiomics for lung cancer.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Fan Wu
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiaofen Chen
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Shengli Ye
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
7
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Yang M, Shi L, Huang T, Li G, Shao H, Shen Y, Zhu J, Ni B. Value of contrast-enhanced magnetic resonance imaging-T2WI-based radiomic features in distinguishing lung adenocarcinoma from lung squamous cell carcinoma with solid components >8 mm. J Thorac Dis 2023; 15:635-648. [PMID: 36910079 PMCID: PMC9992614 DOI: 10.21037/jtd-23-142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
Background Radiomics is one of the research frontiers in the field of imaging and has excellent diagnostic performance. However, there is a lack of magnetic resonance imaging (MRI)-based omics studies on identifying pathological subtypes of lung cancer. Here we explored the value of the contrast-enhanced MRI-T2-weighted imaging (T2WI)-based radiomic analysis in distinguishing adenocarcinoma (Ade) from squamous cell carcinoma (Squ) with solid components >8 mm. Methods A retrospective analysis was performed of a total of 71 lung cancer patients who undergoing contrast-enhanced MRI and computed tomography (CT) before treatment, and the nodules had solid components ≥8 mm in our center from January 2020 to September 2021. All enrolled patients were divided into Squ and Ade groups according to the pathological results. In addition, the two groups were randomly divided into training set and validation set in a ratio of about 7:3. Radiomics software was used to extract the relevant radiomic features. The least absolute shrinkage and selection operator (Lasso) was used to screen radiomic features that were most relevant to lung cancer subtypes, thus calculating the radiomic scores (Rad-score) and constructing the radiomic models. Multivariate logistic regression was used to combine relevant clinical features with Rad-score to form combined model nomograms. The receiver operating characteristic (ROC) curves. the area under the ROC curve (AUC), the decision curve analysis (DCA) and the DeLong's test were used to evaluate the clinical application potentials. Results The sensitivity and specificity of the clinical model based on smoking was 75.0% and 93.8%. The AUC of the constructed magnetic resonance (MR)-Rad model for differentiating the pathological subtypes of lung cancer was 0.8651 in the validation sets. The AUC of the CT-Rad model in the validation set were 0.9286. The combined model constructed by combining clinical features and Rad-score had AUC of 0.8016, for identifying the 2 pathological subtypes of lung cancer in the validation set. There was no significant difference in diagnostic performance between MR-Rad model and CT-Rad model (P>0.05). Conclusions The MR-Rad model has a diagnostic performance similar to that of CT-Rad model, while the diagnostic performance of the combined mode was better than the single MR model.
Collapse
Affiliation(s)
- Maoyuan Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianwei Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangzheng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hancheng Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijun Shen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
10
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
11
|
Wu YJ, Wu FZ, Yang SC, Tang EK, Liang CH. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics (Basel) 2022; 12:diagnostics12051064. [PMID: 35626220 PMCID: PMC9139351 DOI: 10.3390/diagnostics12051064] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related death around the world. With the recent introduction of low-dose lung computed tomography for lung cancer screening, there has been an increasing number of smoking- and non-smoking-related lung cancer cases worldwide that are manifesting with subsolid nodules, especially in Asian populations. However, the pros and cons of lung cancer screening also follow the implementation of lung cancer screening programs. Here, we review the literature related to radiomics for early lung cancer diagnosis. There are four main radiomics applications: the classification of lung nodules as being malignant/benign; determining the degree of invasiveness of the lung adenocarcinoma; histopathologic subtyping; and prognostication in lung cancer prediction models. In conclusion, radiomics offers great potential to improve diagnosis and personalized risk stratification in early lung cancer diagnosis through patient–doctor cooperation and shared decision making.
Collapse
Affiliation(s)
- Yun-Ju Wu
- Department of Software Engineering and Management, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Fu-Zong Wu
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Faculty of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| | - Shu-Ching Yang
- Institute of Education, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung 804241, Taiwan;
| | - En-Kuei Tang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chia-Hao Liang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| |
Collapse
|
12
|
Cong P, Qiu Q, Li X, Sun Q, Yu X, Yin Y. Development and validation a radiomics nomogram for diagnosing occult brain metastases in patients with stage IV lung adenocarcinoma. Transl Cancer Res 2022; 10:4375-4386. [PMID: 35116296 PMCID: PMC8797466 DOI: 10.21037/tcr-21-702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Background To develop and validate a radiomics model using computed tomography (CT) images acquired from the first diagnosis to estimate the status of occult brain metastases (BM) in patients with stage IV lung adenocarcinoma (LADC). Methods One hundred and ninety-three patients who were first diagnosed with stage IV LADC were enrolled and divided into a training cohort (n=135) and a validation cohort (n=58). Then, 725 radiomic features were extracted from contoured primary tumor volumes of LADCs. Intra- and interobserver reliabilities were calculated, and the least absolute shrinkage and selection operator (LASSO) was applied for feature selection. Subsequently, a radiomics signature (Rad-Score) was built. To improve performance, a nomogram incorporating a radiomics signature and an independent clinical predictor was developed. Finally, the established signature and nomogram were assessed using receiver operating characteristic (ROC) curves and precision-recall curves (PRC). Both empirical and α-binomial model-based ROCs and PRCs were plotted, and the area under the curve (AUC) and average precision (AP) of ROCs and PRCs were calculated and compared. Results A radiomics signature and Rad-Score were constructed using eight radiomic features, and these had significant correlations with occult BM status. A nomogram was developed by incorporating a Rad-Score and the primary tumor location. The nomogram yielded an optimal AUC of 0.911 [95% confidence interval (CI): 0.903–0.919] and an AP of 0.885 (95% CI: 0.876–0.894) in the training cohort, and an AUC of 0.873 (95% CI: 0.866–0.80) and an AP of 0.827 (95% CI: 0.820–0.834) in the validation cohort using α-binomial model-based method. The calibration curve demonstrated that the nomogram showed high agreement between the actual occult BM probability and predicted by the nomogram (P=0.427). Conclusions The nomogram incorporating a radiomics signature and a clinical risk factor achieved optimal performance after holistic assessment using unbiased indexes for diagnosing occult BM of patients who were first diagnosed with stage IV LADC.
Collapse
Affiliation(s)
- Ping Cong
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingtao Qiu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingchao Li
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Sun
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
13
|
Hou D, Li W, Wang S, Huang Y, Wang J, Tang W, Zhou L, Qi L, Wu N, Zhao S. Different Clinicopathologic and Computed Tomography Imaging Characteristics of Primary and Acquired EGFR T790M Mutations in Patients with Non-Small-Cell Lung Cancer. Cancer Manag Res 2021; 13:6389-6401. [PMID: 34413682 PMCID: PMC8370596 DOI: 10.2147/cmar.s323972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Although patients with primary and acquired epidermal growth factor receptor (EGFR) T790M positive non-small-cell lung cancer (NSCLC) respond to osimertinib treatment, the optimal treatment strategy differs for these two groups of patients. This study aimed to compare the clinicopathologic and computed tomography (CT) imaging characteristics between primary and acquired EGFR T790M mutations in patients with NSCLC before treatment. Patients and Methods We enrolled two groups of patients with primary or acquired EGFR T790M mutation NSCLC (n = 103 per group) from January 2012 to December 2019. We analyzed their clinicopathologic and CT characteristics and differences between the groups. The groups were further categorized based on 21L858R and 19del to exclude the effect of coexistent mutations. Results Primary, compared to acquired, T790M mutation tends to coexist with 21L858R (P < 0.001), exhibiting earlier tumor stage (P < 0.001), higher differentiation (P = 0.029), higher proportion of lepidic subtype adenocarcinoma (P < 0.001), and significant associations with some CT features (multiple primary lung cancers, ground-glass opacity, air bronchogram, and vacuole sign [all P < 0.001]). The combined model, composed of clinicopathologic and conventional CT signature and CT-radiomic signature, showed good discriminative ability with the area under the receiver operating characteristic curve 0.90 and 0.91 in the training and validation datasets, respectively. The T790M mutation contributed to these differences independently of coexistent mutations. Conclusion We identified clinicopathologic and CT imaging differences between primary and acquired T790M mutations. These findings provide insights into developing future personalized T790M mutation status-based theranostic strategies.
Collapse
Affiliation(s)
- Donghui Hou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Sicong Wang
- GE Healthcare, Life Sciences, Beijing, People's Republic of China
| | - Yao Huang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianwei Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lina Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Linlin Qi
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ning Wu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shijun Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|