1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
Erdogan C, Suer I, Kaya M, Ozturk S, Aydin N, Kurt Z. Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer. PLoS One 2024; 19:e0301995. [PMID: 38635539 PMCID: PMC11025867 DOI: 10.1371/journal.pone.0301995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Breast cancer (BC) is the most common cancer among women with high morbidity and mortality. Therefore, new research is still needed for biomarker detection. GSE101124 and GSE182471 datasets were obtained from the Gene Expression Omnibus (GEO) database to evaluate differentially expressed circular RNAs (circRNAs). The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases were used to identify the significantly dysregulated microRNAs (miRNAs) and genes considering the Prediction Analysis of Microarray classification (PAM50). The circRNA-miRNA-mRNA relationship was investigated using the Cancer-Specific CircRNA, miRDB, miRTarBase, and miRWalk databases. The circRNA-miRNA-mRNA regulatory network was annotated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. The protein-protein interaction network was constructed by the STRING database and visualized by the Cytoscape tool. Then, raw miRNA data and genes were filtered using some selection criteria according to a specific expression level in PAM50 subgroups. A bottleneck method was utilized to obtain highly interacted hub genes using cytoHubba Cytoscape plugin. The Disease-Free Survival and Overall Survival analysis were performed for these hub genes, which are detected within the miRNA and circRNA axis in our study. We identified three circRNAs, three miRNAs, and eighteen candidate target genes that may play an important role in BC. In addition, it has been determined that these molecules can be useful in the classification of BC, especially in determining the basal-like breast cancer (BLBC) subtype. We conclude that hsa_circ_0000515/miR-486-5p/SDC1 axis may be an important biomarker candidate in distinguishing patients in the BLBC subgroup of BC.
Collapse
Affiliation(s)
- Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ilknur Suer
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kaya
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nizamettin Aydin
- Department of Computer Engineering, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey
| | - Zeyneb Kurt
- Information School, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Zhao S, Ly A, Mudd JL, Rozycki EB, Webster J, Coonrod E, Othoum G, Luo J, Dang H, Fields RC, Maher C. Characterization of cell-type specific circular RNAs associated with colorectal cancer metastasis. NAR Cancer 2023; 5:zcad021. [PMID: 37213253 PMCID: PMC10198730 DOI: 10.1093/narcan/zcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and a leading cause of cancer deaths in the United States. More than half of CRC patients develop metastatic disease (mCRC) with an average 5-year survival rate of 13%. Circular RNAs (circRNAs) have recently emerged as important tumorigenesis regulators; however, their role in mCRC progression remains poorly characterized. Further, little is known about their cell-type specificity to elucidate their functions in the tumor microenvironment (TME). To address this, we performed total RNA sequencing (RNA-seq) on 30 matched normal, primary and metastatic samples from 14 mCRC patients. Additionally, five CRC cell lines were sequenced to construct a circRNA catalog in CRC. We detected 47 869 circRNAs, with 51% previously unannotated in CRC and 14% novel candidates when compared to existing circRNA databases. We identified 362 circRNAs differentially expressed in primary and/or metastatic tissues, termed circular RNAs associated with metastasis (CRAMS). We performed cell-type deconvolution using published single-cell RNA-seq datasets and applied a non-negative least squares statistical model to estimate cell-type specific circRNA expression. This predicted 667 circRNAs as exclusively expressed in a single cell type. Collectively, this serves as a valuable resource, TMECircDB (accessible at https://www.maherlab.com/tmecircdb-overview), for functional characterization of circRNAs in mCRC, specifically in the TME.
Collapse
Affiliation(s)
- Sidi Zhao
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Amy Ly
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jace Webster
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ghofran Othoum
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO 63108, USA
| |
Collapse
|
4
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
5
|
Miao Y, Wu J, Wu R, Wang E, Wang J. Circ_0040929 Serves as Promising Biomarker and Potential Target for Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2079-2092. [PMID: 36101791 PMCID: PMC9464637 DOI: 10.2147/copd.s364553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Circular RNAs (circRNAs) can act as essential regulators in many diseases, including chronic obstructive pulmonary disease (COPD). We aimed to explore the role and underlying mechanism of circ_0040929 in COPD. Methods A cellular model of COPD was constructed by treating human bronchial epithelial cells (16HBE) with cigarette smoke extract (CSE). The levels of circ_0040929, microRNA-515-5p (miR-515-5p) and insulin-like growth factor-binding protein 3 (IGFBP3) were measured by quantitative real-time PCR. Cell proliferation was assessed by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays. Cell apoptosis was evaluated by flow cytometry. Protein expression was measured using Western blot assay. The levels of inflammatory factors and airway remodeling were assayed via enzyme-linked immunosorbent assay. The interaction between miR-515-5p and circ_0040929/IGFBP3 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. Exosomes were detected using transmission electron microscopy. Results Circ_0040929 expression and IGFBP3 expression were upregulated in the serum of smokers (n = 22) compared to non-smokers (n = 22) and more significantly upregulated in the serum of COPD patients (n = 22). However, miR-515-5p expression was decreased in the serum of smokers compared to non-smokers and further reduced in the serum of COPD. Circ_0040929 knockdown attenuated CSE-induced cell injury by increasing proliferation and reducing apoptosis, inflammation, and airway remodeling in 16HBE cells. MiR-515-5p was a direct target of circ_0040929, and miR-515-5p inhibition reversed the effect of circ_0040929 knockdown in CSE-treated 16HBE cells. IGFBP3 was a direct target of miR-515-5p, and miR-515-5p overexpression alleviated CSE-induced cell injury via targeting IGFBP3. Moreover, circ_0040929 regulated IGFBP3 expression by targeting miR-515-5p. Importantly, circ_0040929 was upregulated in serum exosomes from COPD patients. Conclusion Circ_0040929 played a promoting role in CSE-induced COPD by regulating miR-515-5p/IGFBP3 axis, suggesting that it might be a novel potential target for COPD treatment.
Collapse
Affiliation(s)
- Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Junfang Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Runmiao Wu
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| | - Enguang Wang
- Department of Respiratory and Critical Care, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi City, 830000, People's Republic of China
| | - Jing Wang
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an City, 710068, People's Republic of China
| |
Collapse
|
6
|
Gu Q, Hou W, Shi L, Zhu Z, Liu H, He X. CircMCTP2 (has-circ-0000658) facilitates the proliferation and metastasis of bladder carcinoma through modulating the miR-498/murine double minute-2 axis. Bioengineered 2022; 13:10734-10748. [PMID: 35475453 PMCID: PMC9208511 DOI: 10.1080/21655979.2022.2054161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CircMCTP2 is a novel circRNA, which is associated with various kinds of malignant tumors progression, such as gastric cancer. However, the function of circMCTP2 in bladder carcinoma (BC) has no idea. The purpose of this study was tantamount to functionally dissect circMCTP2 in the progression of BC. In our study, circMCTP2 expression was strongly increased in BC tissues and cell lines. High expression of circMCTP2 predicted a poor prognosis of BC patients. CircMCTP2 deficiency impaired the cell growth, migration as well as invasive ability of BC cell lines (J82 and T24). In vivo, circMCTP2 deficiency cut the tumor growth rates and the tumor weight. In BC cells, circMCTP2 deficiency enhanced the translation of E-cadherin, while diminishing the translation of N-cadherin, Vimentin, and Snail. Moreover, circMCTP2 acted as a sponge of miR-498 to regulate murine double minute-2 (MDM2) expression. In BC tissues, a negative correlation was observed between the expression levels of circMCTP2 and miR-498. Additionally, either miR-498 silencing or MDM2 over-expression augmented the carcinogenic action of circMCTP2 on BC. In conclusion, our study showed that circMCTP2 regulates the expression of MDM2 by sponging miR-498 to promote the development of BC. These findings offer a new strategy for early diagnosis of BC and its therapeutics.
Collapse
Affiliation(s)
- Qiao Gu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wenjie Hou
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University (Medical Center of Soochow University), Suzhou, P.R. China
| | - Lijuan Shi
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Zonghao Zhu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Huan Liu
- Department of Pathology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, P.R. China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
7
|
Peng X, Mo Y, Liu J, Liu H, Wang S. Identification and Validation of miRNA-TF-mRNA Regulatory Networks in Uterine Fibroids. Front Bioeng Biotechnol 2022; 10:856745. [PMID: 35392402 PMCID: PMC8981149 DOI: 10.3389/fbioe.2022.856745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UF) are the most common benign gynecologic tumors and lead to heavy menstrual bleeding, severe anemia, abdominal pain, and infertility, which seriously harm a women’s health. Unfortunately, the regulatory mechanisms of UF have not been elucidated. Recent studies have demonstrated that miRNAs play a vital role in the development of uterine fibroids. As a high-throughput technology, microarray is utilized to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between UF and myometrium. We identified 373 candidate DEGs and the top 100 DEMs. Function enrichment analysis showed that candidate DEGs were mainly enriched in biological adhesion, locomotion and cell migration, and collagen-containing extracellular matrix. Subsequently, protein-protein interaction (PPI) networks are constructed to analyze the functional interaction between DEGs and screen hub DEGs. Subsequently, the expression levels of hub DEGs were validated by real-time PCR of clinical UF samples. The DGIdb database was used to select candidate drugs for hub DEGs. Molecular docking was applied to test the affinity between proteins and drugs. Furthermore, target genes for 100 candidate DEMs were predicted by miRwalk3.0. After overlapping with 373 candidate DEGs, 28 differentially expressed target genes (DEGTs) were obtained. A miRNA-mRNA network was constructed to investigate the interactions between miRNA and mRNA. Additionally, two miRNAs (hsa-miR-381-3p and hsa-miR-181b-5p) were identified as hub DEMs and validated through RT-PCR. In order to better elucidate the pathogenesis of UF and the synergistic effect between miRNA and transcription factor (TF), we constructed a miRNA-TF-mRNA regulatory network. Meanwhile, in vitro results suggested that dysregulated hub DEMs were associated with the proliferation, migration, and apoptosis of UF cells. Our findings provided a novel horizon to reveal the internal mechanism and novel targets for the diagnosis and treatment of UF.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanqun Mo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Junliang Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huining Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| |
Collapse
|
8
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|