1
|
Jin F, Yan Y, Ye Z, Wang L, Deng C, Jiang J, Dong K. CDR1as Deficiency Prevents Photoreceptor Degeneration by Regulating miR-7a-5p/α-syn/Parthanatos Pathway in Retinal Detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00408-5. [PMID: 39566824 DOI: 10.1016/j.ajpath.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Retinal detachment (RD) is the separation of the neural retina from the retinal pigment epithelium, with photoreceptor degeneration being a major cause of irreversible vision loss. Ischemia and hypoxia after RD decreased the level of miR-7a-5p (miR-7) and promoted the expression of its main target, α-synuclein (α-syn), which activated the parthanatos pathway and led to photoreceptor damage. Circular RNA CDR1as, which is an antisense transcript of cerebellar degeneration-related protein 1, functions as a "sponge" for miR-7, thereby regulating its abundance and activity. In this study, we first reported that CDR1as expression is elevated after RD. Adeno-associated virus serotype 9 vector containing the shRNA-CDR1as sequence was used to inhibit CDR1as expression via subretinal injection. Hematoxylin and eosin staining and transmission electron microscopy revealed that the morphology and outer nuclear layer thickness of the retina were preserved and photoreceptor cell death was decreased after experimental RD in mice. Mechanistically, CDR1as deficiency significantly increased the expression of miR-7, then decreased the expression of α-syn, poly (ADP-ribose) polymerase 1, apoptosis-inducing factor, and migration inhibitory factor. Furthermore, visual function was improved as shown by Morris water maze experiments in the mouse model of RD. Our findings suggest a surprisingly neuroprotective role for CDR1as deficiency, which is probably mediated by enhancing miR-7 activity and inhibiting α-syn/poly (ADP-ribose) polymerase 1/apoptosis-inducing factor pathway, thereby preventing photoreceptor degeneration.
Collapse
Affiliation(s)
- Feiyu Jin
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yuanye Yan
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ziyang Ye
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lisong Wang
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Can Deng
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiazhen Jiang
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Kai Dong
- Division of Life Sciences and Medicine, Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Liu S, Wang M, Lv X, Zhou J, Gao L. CircCCL22 Regulates CDC25A via Sponging miR-543 and Promotes Proliferation and Metastasis in Endometrial Cancer. Mol Biotechnol 2024; 66:2522-2531. [PMID: 37747673 DOI: 10.1007/s12033-023-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Endometrial cancer (EC) is the most common gynecological tumor. Circular RNAs are a novel type of non-coding RNA that have important regulatory functions, particularly in the pathogenic progression of cancer. In this study, we investigated the function of circCCL22, and elucidated its molecular mechanism in EC progresssion. The expression of circCCL22, miR-543 and CDC25A in EC tissues and cells were determined by qRT-PCR and western blot. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing and transwell assays were executed to assess the cell viability, proliferation, migration and invasion. Dual-luciferase report assay was utilized to investigate the interaction of miR-543 with circCCL22 and CDC25A. The role of circCCL22 in EC in vivo was investigated by xenograft assay. CircCCL22 was notably upregulated in EC tissues and cells. Functionally, circCCL22 knockdown suppressed EC cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. Mechanistically, circCCL22 acted as "miR-543 sponges" to regulate its targeted gene CDC25A expression in EC cells. The inhibiting effect induced by circCCL22 knockdown on EC cell proliferation, migration and invasion was greatly reversed by miR-543 inhibition or CDC25A overexpression. Our results revealed that circCCL22 regulated EC progression through targeting miR-543/CDC25A axis, and it could be a novel therapeutic target of EC.
Collapse
Affiliation(s)
- Sichao Liu
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, China.
| | - Xianglin Lv
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| | - Le Gao
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, No. 1616, Yanxiang Road, Qujiang New District, Xi'an, 710061, China
| |
Collapse
|
3
|
Włodarczyk K, Kuryło W, Pawłowska-Łachut A, Skiba W, Suszczyk D, Pieniądz P, Majewska M, Boniewska-Bernacka E, Wertel I. circRNAs in Endometrial Cancer-A Promising Biomarker: State of the Art. Int J Mol Sci 2024; 25:6387. [PMID: 38928094 PMCID: PMC11203539 DOI: 10.3390/ijms25126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors among women in the 21st century, whose mortality rate is increasing every year. Currently, the diagnosis of EC is possible only after a biopsy. However, it is necessary to find a new biomarker that will help in both the diagnosis and treatment of EC in a non-invasive way. Circular RNAs (circRNAs) are small, covalently closed spherical and stable long non-coding RNAs (lncRNAs) molecules, which are abundant in both body fluids and human tissues and are expressed in various ways. Considering the new molecular classification of EC, many studies have appeared, describing new insights into the functions and mechanisms of circRNAs in EC. In this review article, we focused on the problem of EC and the molecular aspects of its division, as well as the biogenesis, functions, and diagnostic and clinical significance of circRNAs in EC.
Collapse
Affiliation(s)
- Karolina Włodarczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Weronika Kuryło
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Anna Pawłowska-Łachut
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| | - Paulina Pieniądz
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
- Department of Virology and Immunology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland
| | - Małgorzata Majewska
- Department of Industrial and Environmental Microbiology, Institute of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland;
| | - Ewa Boniewska-Bernacka
- Medical Department, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (W.K.); (A.P.-Ł.); (W.S.); (D.S.); (P.P.); (I.W.)
| |
Collapse
|
4
|
Ziemiński R, Stupak A, Kwiatek M, Gęca T, Warowicka A, Hejne K, Kwaśniewska A, Goździcka-Józefiak A, Kwaśniewski W. Analysis of the Expression of LSF Transcription Factor in the Regulation of Transcription and TSG101 during the Neoplastic Transformation of Endometrial Cells. Cells 2024; 13:580. [PMID: 38607019 PMCID: PMC11011417 DOI: 10.3390/cells13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
Previous research indicates that carcinogenesis involves disrupting the functions of numerous genes, including factors involved in the regulation of transcription and cell proliferation. For these reasons, in endometrial carcinogenesis, we decided to investigate the expression of TSG101 (a suppressor of tumor transformation) and LSF (a transcription factor involved in numerous cellular processes, such as cell cycle regulation, cell growth, development, and apoptosis). LSF may be involved in the regulation of TSG101 expression. The research material consisted of endometrial cancer samples from 60 patients. The control group consisted of normal endometrium samples donated by 60 women undergoing surgery for benign diseases of the female reproductive organs. The samples were subjected to immunohistochemical staining with antibodies specific to TSG101 and LSF. Specific antibodies were used to identify TSG101 and LSF in the examined histopathological preparations. An approximately 14-fold lower risk of endometrial cancer development was observed in patients with TSG expression in more than 75% of the assessed cells (4% vs. 36%; OR = 0.07; p = 0.0182). There was a four-fold lower risk of endometrial cancer development in patients with LSF expression in more than 50% of the assessed cells (32% vs. 64%; OR = 0.26; p = 0.0262). A more than three-fold lower risk of endometrial cancer development was observed in patients with LSF expression in more than 75% of the assessed cells (24% vs. 52%; OR = 0.29; p = 0.0454). Endometrial cancer was diagnosed in those with a lower level of TSG101 expression than in those with a cancer-free endometrium. Decreased expression of TSG101 may be a marker of endometrial cancer, and increased expression of LSF when diagnosed with endometrial cancer may indicate greater advancement of the disease. These markers might be used as diagnostic and prognostic markers-however, there is a lack of a correlation between them.
Collapse
Affiliation(s)
- Rafał Ziemiński
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Maciej Kwiatek
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Tomasz Gęca
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (A.W.)
| | - Karolina Hejne
- Department of Pathomorphology and Forensic Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 11-082 Olsztyn, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland; (R.Z.); (M.K.); (T.G.); (A.K.)
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland; (A.W.)
| | - Wojciech Kwaśniewski
- Department of Gynecology Oncology and Gynecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
5
|
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK, Geliebter J. Dysregulated Expression Patterns of Circular RNAs in Cancer: Uncovering Molecular Mechanisms and Biomarker Potential. Biomolecules 2024; 14:384. [PMID: 38672402 PMCID: PMC11048371 DOI: 10.3390/biom14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Circular RNAs (circRNAs) are stable, enclosed, non-coding RNA molecules with dynamic regulatory propensity. Their biogenesis involves a back-splicing process, forming a highly stable and operational RNA molecule. Dysregulated circRNA expression can drive carcinogenic and tumorigenic transformation through the orchestration of epigenetic modifications via extensive RNA and protein-binding domains. These multi-ranged functional capabilities have unveiled extensive identification of previously unknown molecular and cellular patterns of cancer cells. Reliable circRNA expression patterns can aid in early disease detection and provide criteria for genome-specific personalized medicine. Studies described in this review have revealed the novelty of circRNAs and their biological ss as prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kate J. Nielsen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Robert Suriano
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Division of Natural Sciences, University of Mount Saint Vincent, Bronx, NY 10471, USA
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
6
|
Du W, Quan X, Wang C, Song Q, Mou J, Pei D. Regulation of tumor metastasis and CD8 + T cells infiltration by circRNF216/miR-576-5p/ZC3H12C axis in colorectal cancer. Cell Mol Biol Lett 2024; 29:19. [PMID: 38267865 PMCID: PMC10809481 DOI: 10.1186/s11658-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) is an important regulator of tumor progression, growth and metastasis. In addition, tumor metastasis is one of the principal obstacles to the treatment of colorectal cancer (CRC). Circular RNAs (circRNAs) have been recognized as important regulators in the development of malignancies. However, their specific roles and mechanisms in both CRC metastasis and TIME have not been thoroughly investigated. METHODS High-throughput next-generation sequencing technology and real-time fluorescence quantitative PCR technology were performed to identify differential circRNAs in CRC. Functional assays including transwell assay, wound healing assay, and metastasis models were conducted to assess the effect of circRNF216 on CRC metastasis. In addition, luciferase reporter, western blot, RNA immunoprecipitation (RIP), and fluorescent in situ hybridization (FISH) were performed to explore the underlying mechanism of circRNF216. The level of immune infiltration was assessed by bioinformatics analysis and flow cytometry in CRC model. Furthermore, rescue and mutation experiments were used for verification. RESULTS circRNF216 was identified as a putative tumor suppressor that is downregulated in CRC tissues and cells. Overexpression of circRNF216 inhibits metastasis in vitro and vivo. Mechanistically, circRNF216 acts as a competitive endogenous RNA (ceRNA) for miR-576-5p, alleviating miR-576-5p repression on its target ZC3H12C, which in turn downregulated N-cadherin. Additionally, circRNF216 could enhance the infiltration level of CD8+ T cells by upregulating ZC3H12C, ultimately inhibiting the development of CRC, which suggests that circRNF216 is a potential biomarker for the treatment of CRC. CONCLUSIONS Here, we provide novel mechanistic insight revealing how circRNF216 functioned in CRC metastasis and TIME via the circRNF216/miR-576-5p/ZC3H12C pathway. Therefore, circRNF216 holds promise as a potential therapeutic target and novel diagnostic marker for CRC.
Collapse
Affiliation(s)
- Wenqi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Quan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chaoqun Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qiuya Song
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Solati A, Thvimi S, Khatami SH, Shabaninejad Z, Malekzadegan Y, Alizadeh M, Mousavi P, Taheri-Anganeh M, Razmjoue D, Bahmyari S, Ghasemnejad-Berenji H, Vafadar A, Soltani Fard E, Ghasemi H, Movahedpour A. Non-coding RNAs in gynecologic cancer. Clin Chim Acta 2023; 551:117618. [PMID: 38375624 DOI: 10.1016/j.cca.2023.117618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024]
Abstract
The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.
Collapse
Affiliation(s)
- Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Thvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Alizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Damoun Razmjoue
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | |
Collapse
|
8
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
9
|
Wu Y, Wang F, Shi J, Guo X, Li F. CircSMAD2 accelerates endometrial cancer cell proliferation and metastasis by regulating the miR-1277-5p/MFGE8 axis. J Gynecol Oncol 2023; 34:e19. [PMID: 36659830 PMCID: PMC9995867 DOI: 10.3802/jgo.2023.34.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is a common gynecological malignant tumor. CircRNAs play crucial roles in cancer progression and metastasis. However, the biological functions of circRNAs in EC remain largely unknown. METHODS CircSMAD2, miR-1277-5p, MFGE8 and relative maker protein expression in EC tissues or cell lines were analyzed by quantitative real-time polymerase chain reaction and Western blot. In vitro and in vivo functional assays, including EDU, CCK8, colony formation, transwell, tube formation and tumor xenograft assays, were conduct to explore the effects of circSMAD2 on EC. Mechanism assays were conducted to confirm the binding between miR-1277-5p and circSMAD2 or MFGE8 expression. RESULTS Upregulation of circSMAD2 was uncovered in both EC tissues and cell lines. Functionally, silencing of circSMAD2 apparently inhibited the proliferation, migration, invasion and angiogenesis of EC cell lines in vitro. Mechanistically, circSMAD2 sponged miR-1277-5p to upregulate MFGE8 expression. The decrease of miR-1277-5p and increase of MFGE8 were observed both in EC tissues and cell lines. Then MFGE8 knockdown or miR-1277-5p upregulation suppressed EC cell oncogenic biological behavior. Rescue experiments showed that miR-1277-5p mimics countervailed the anticancer effects of circSMAD2 silencing on EC. Besides that, MFGE8 overexpression also attenuated the inhibitory action of miR-1277-5p mimic in EC. Moreover, knockdown of circSMAD2 inhibited EC growth in vivo. CONCLUSION CircSMAD2 functions as an oncogene in promoting the progression of EC through miR-1277-5p/MFGE8 axis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Gynaecology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Fuhua Wang
- Department of Molecular Biology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Shi
- Department of Gynaecology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiangyun Guo
- Department of Molecular Biology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Feng Li
- Department of Molecular Biology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
10
|
Gao S, Zhao T, Meng F, Luo Y, Li Y, Wang Y. Circular RNAs in endometrial carcinoma (Review). Oncol Rep 2022; 48:212. [PMID: 36263622 PMCID: PMC9608256 DOI: 10.3892/or.2022.8427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
As one of the leading causes of death in women in Western developed countries, endometrial carcinoma (EC) is a common gynecological malignant tumor that seriously threatens women's health. In recent years, a trend has emerged of EC being manifested in younger women, and its overall incidence is gradually rising. Circular RNAs (circRNAs) are novel endogenous transcripts that have limited ability to encode proteins due to their covalent closed‑loop structure, which differs from that of other types of RNA. A growing body of evidence has demonstrated that circRNAs fulfill an important role in lung cancer, gastric cancer, breast cancer, EC and other malignant tumor types, and they can affect the occurrence and development of these malignancies through a variety of pathways, further demonstrating the potential of circRNAs as molecular biomarkers for the diagnosis, treatment and prognosis of malignant tumors. The purpose of the present review is to summarize the current understanding of the biogenesis and effects of circRNAs, and to discuss the expression, function and underlying mechanism of circRNAs in EC in order to identify potential novel biomarkers.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Tianjun Zhao
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Fangchi Meng
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Chen Z, Huang M, You J, Lin Y, Huang Q, He C. Circular RNA hsa_circ_0023404 promotes the proliferation, migration and invasion in endometrial cancer cells through regulating miR-217/MAPK1 axis. Eur J Med Res 2022; 27:242. [DOI: 10.1186/s40001-022-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Emerging studies indicated that circular RNA hsa_circ_ 0023404 and its target miR-217/MARK1 axis play a critical role in cancer progression such as non-small cell lung cancer and cervical cancer. However, the role of hsa_circ_0023404/miR-217/MARK1 involved in endometrial cancer (EC) was not investigated yet. The aim of this study is to investigate the functions of hsa_circ_0023404 in endometrial cancer (EC) and the potential molecular mechanism.
Methods
We used RT-qPCR and Western blot approach to detect the expressed levels of related genes in EC cell lines. Transfected siRNAs were applied to knockdown the level of related mRNA in cells. Cell proliferation by CCK-8 assay and colony formation assay were applied to detect cell proliferation. Transwell migration and invasion assay was for detecting the migration and invasion of the cells.
Results
RT-qPCR showed that the levels of hsa_circ_0023404 and MARK1 mRNA were upregulated, but mirR-217 was decreased in three endometrial cancer cell lines. Knockdown of hsa_circ_0023404 by siRNA markedly increased the level of miR-217 and reduced the proliferation of the Ishikawa cells. It also inhibited the cell migration and invasion. Anti-miR-217 can reverse the promoted proliferation, migrations and invasion of Ishikawa cells mediated by si-circ_0023404. si-MARK1 restored the inhibited cell proliferation, migration and invasion of the co-transfected Ishikawa cells with si- circ_0023404 and anti-miR-217.
Conclusion
hsa_circ_0023404 exerts a tumor-promoting role in endometrial cancer by regulating miR-217/MARK1 axis. hsa_circ_0023404 inhibit miR-217 as sponge which inhibit endometrial cancer cell growth and metastasis. MARK1 is downstream target of miR217 and upregulated by hsa_circ_ 0023404/miR-217 axis and involved in the endometrial cancer progression.
Collapse
|
12
|
Lei TX, He DJ, Cao J, Lv WG. CircWDR26 regulates endometrial carcinoma progression via miR-212-3p-mediated typing genes MSH2. Eur J Med Res 2022; 27:135. [PMID: 35897048 PMCID: PMC9327368 DOI: 10.1186/s40001-022-00755-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNA) are important in mediating tumor progression, but their roles in endometrial carcinoma (EC) are not fully understood yet. Many circRNAs are dysregulated and may contribute to EC progression. The functions of circWDR26 in EC remain unknown. Methods The expression of circWDR26 in EC and adjacent normal tissues, and cell lines was determined by qPCR. The proliferation, apoptosis, migration, and invasion of EC cells was examined by CCK-8 assay, flow cytometry, wound healing assay and Transwell assay. The interaction between circWDR26, MSH2 and miR-212-3p was determined by luciferase assay. EC cells were inoculated into nude mice and tumor burden was determined by measuring tumor dimensions, size, and weight. The proliferative marker Ki67 in EC tissue was determined by immunohistochemistry. Results The expression of circWDR26 in EC tissues or cell lines was higher than in the normal tissue or endometrial epithelial cells. Downregulation of circWDR26 resulted in attenuated proliferation, increased apoptosis, reduced migration and invasion of EC cells. Mechanistically, circWDR26 targeted and suppressed the expression of miR-212-3p. We further found that MSH2 was the novel target of miR-212-3p and was upregulated by circWDR26 via inhibiting miR-212-3p. In vivo experiment demonstrated that circWDR26 was essential for EC tumor growth. Conclusion circWDR26 promoted EC progression by regulating miR-212-3p/MSH2 axis and provided novel insights into anti-cancer treatment.
Collapse
Affiliation(s)
- Tao-Xiang Lei
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China
| | - De-Jian He
- Department of Emergency, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), Chenzhou, 423000, Hunan Province, China
| | - Jian Cao
- Medical Imaging Center, Chenzhou Fourth People's Hospital, Chenzhou, 423000, Hunan Province, China
| | - Wang-Gui Lv
- Department of Gynecological Oncology Surgery, Chenzhou First People's Hospital (The First Affiliated Hospital of Xiangnan University), No.849 Youth Avenue, Chenzhou, 423000, Hunan Province, China.
| |
Collapse
|
13
|
Zhu Y, Tang L, Chen Q, Chen M. Evaluation of menopausal endometrial lesions via mathematical modeling clinical indicators and ultrasonographic parameters. Technol Health Care 2022; 30:535-544. [PMID: 35124627 PMCID: PMC9028664 DOI: 10.3233/thc-228049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND: The diagnosis of benign and malignant menopausal endometrial lesions (MEL) is often misled by complicated clinical indicators and ultrasonographic parameters in actual clinical applications. OBJECTIVE: To investigate the performance of clinical indicators and ultrasonographic parameters in the diagnosis of MEL. METHODS: A cohort of 156 enrolled menopausal patients with MEL was divided into benign group (128 cases) and malignant group (28 cases). Two clinical indicators of patient age (PA), abnormal vaginal bleeding (AVB) and three transvaginal ultrasonography (TVS) parameters of endometrial thickness (ET), endometrial uneven echo (EUE) and endometrial blood flow signal (EBFS) were measured for the mathematical modelling. The performance of combined indicators and individual indicators were firstly compared, and then the optimized combined indicators was compared with corresponding individual indicators, respectively. RESULTS: Our experiments verified that the mathematical modelling presented robust capabilities in the diagnosis of MEL with the sensitivity, specificity and AUC of 78.6%, 75.8% and 0.83 for combined indicators, and 75.0%, 81.3% and 0.85 for optimized combined indicators, respectively. The cut off thresholds of PA was 57.5 years, ET was 11.5 mm. Furthermore, the AVB presented the most important risk factor among the optimized indicators of PA, ET and AVB (P< 0.05). CONCLUSIONS: The combined indicators presented better performance in differentiating benign and malignant MEL and the AVB demonstrated the most capability for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Man Chen
- Corresponding author: Man Chen, Department of Medical Ultrasound, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Rd, 200336 Shanghai, China. Tel.: +86 13601803138; E-mail:
| |
Collapse
|
14
|
Liu Y, Yuan H, He T. Downregulated circular RNA hsa_circ_0005797 inhibits endometrial cancer by modulating microRNA-298/Catenin delta 1 signaling. Bioengineered 2021; 13:4634-4645. [PMID: 34852711 PMCID: PMC8973656 DOI: 10.1080/21655979.2021.2013113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal expression of circular RNA (circRNA) expression has been implicated in endometrial cancer (EC) progression. Thus, investigation of the mechanism of hsa_circ_0005797 during EC etiology may provide new insight into the treatment of EC. In the present study, we found that hsa_circ_0005797 expression was significantly increased in EC biological samples and cell lines, whereas its downregulation inhibited in vitro tumor cells proliferation and invasion phenotypes and suppressed tumor formation in nude mice. In mechanism, we characterized hsa_circ_0005797 as an miR-298 sponge, with CTNND1 identified as a target of miR-298. Our rescue assay data further revealed that hsa_circ_0005797 silencing inhibited EC cells proliferation and invasion via miR-298/CTNND1 signaling. In conclusion, our study confirmed hsa_circ_0005797 is a poor prognostic factor for EC and modulates EC phenotypes by regulating the hsa_circ_000579/miR-298/CTNND1 signaling, which provides potential treatment targets for EC
Collapse
Affiliation(s)
- Yating Liu
- Luoyang Maternal and Child Health Hospital, Luoyang 471000, Henan China.,Department of Gynecology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Hongying Yuan
- Medicine College, Henan University of Science and Technology, Luoyang 471003, China
| | - Tao He
- Department of Gynecology, New District Hospital,The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
15
|
Wang N, Guo Y, Song L, Tong T, Fan X. Circular RNA intraflagellar transport 80 facilitates endometrial cancer progression through modulating miR-545-3p/FAM98A signaling. J Gynecol Oncol 2021; 33:e2. [PMID: 34783205 PMCID: PMC8728667 DOI: 10.3802/jgo.2022.33.e2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Endometrial cancer (ECa) is a common gynecological malignancy. Circular RNAs (circRNAs) have been identified as key regulators of human tumorigenesis and development. Herein, we explored the role and mechanism of circular RNA intraflagellar transport 80 (circ-IFT80, also called circ_0067835) in ECa. Methods Circ-IFT80, microRNA-545-3p (miR-545-3p), and family with sequence similarity 98 member A (FAM98A) were quantified by quantitative real-time polymerase chain reaction or Western blot. The biological characteristics of ECa cells were evaluated via Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, transwell, tube formation and flow cytometry assays. Dual-luciferase reporter assay or RNA pull-down assay was employed to verify the binding relationship between miR-545-3p and circ-IFT80 or FAM98A. Xenograft assays were conducted to analyze the effect of circ-IFT80 in vivo. Results Circ-IFT80 and FAM98A were up-regulated, and miR-545-3p was down-regulated in ECa tissues and cells. Knockdown of circ-IFT80 blocked proliferation, migration, invasion and angiogenesis and promoted apoptosis in ECa cells. Moreover, circ-IFT80 harbored a binding site for miR-545-3p, and the effects of circ-IFT80 were mediated by miR-545-3p. FAM98A was a direct target of miR-545-3p, and miR-545-3p hindered ECa cell progression via targeting FAM98A. Circ-IFT80 induced FAM98A expression through miR-545-3p. Furthermore, silence of circ-IFT80 suppressed tumor growth in vivo. Conclusion Circ-IFT80 may promote the malignant progression of ECa cells at least in part by modulating miR-545-3p/FAM98A axis, providing a potential therapeutic target for ECa. We further investigated the potential role of circ-IFT80 in endometrial cancer (ECa) and unveiled that circ-IFT80 accelerated the malignant progression of ECa via decoying miR-545-3p and consequently enhancing FAM98A. Our findings provided novel insights into the pathogenesis of ECa and revealed promising therapeutic targets.
Collapse
Affiliation(s)
- Na Wang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Guo
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liqin Song
- Department of Obstetrics and Gynecology, Longyao County Hospital, Longyao, Hebei, China
| | - Tong Tong
- Department of Anesthesiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaomei Fan
- Department of Gynecological Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
16
|
Shao X, Qin J, Wan C, Cheng J, Wang L, Ai G, Cheng Z, Tong X. ADSC Exosomes Mediate lncRNA-MIAT Alleviation of Endometrial Fibrosis by Regulating miR-150-5p. Front Genet 2021; 12:679643. [PMID: 34178037 PMCID: PMC8220143 DOI: 10.3389/fgene.2021.679643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background Secondary infertility remains a major complication of endometrial fibrosis in women. The use of exosomes from adipose-derived mesenchymal stem cells (ADSCs) has shown promising results for the treatment of endometrial fibrosis. However, the mechanisms of action of ADSC-exosome (ADSC-Exo) therapy remain unclear. Materials and Methods An endometrial fibrosis model was established in mice treated with alcohol and endometrial epithelial cells (ESCs) treated with TGF-β1. ADSCs were isolated from Sprague Dawley (SD) rats, and exosomes were isolated from ADSCs using ExoQuick reagent. Exosomes were identified by transmission electron microscopy (TEM), NanoSight, and Western blot analysis. The expression level of lncRNA-MIAT was detected by qPCR analysis. Western blot analysis was carried out to determine the protein levels of fibrosis markers (TGFβR1, α-SMA, and CK19). A dual-luciferase reporter gene assay was used to verify the relationship between target genes. The endometrial tissues of the endometrial fibrosis model were stained with HE and Masson’s trichrome. Results ADSCs and ADSC-Exos were successfully isolated, and the expression level of lncRNA-MIAT was significantly down-regulated in endometrial tissue and the TGF-β1-induced ESC injury model, whereas ADSC-Exos increased the expression of lncRNA-MIAT in the TGF-β1-induced ESC model. Functionally, ADSC-Exo treatment repressed endometrial fibrosis in vivo and in vitro by decreasing the expression of hepatic fibrosis markers (α-SMA and TGFβR1) and increasing the expression of CK19. Moreover, miR-150-5p expression was repressed by lncRNA-MIAT in the TGF-β1-induced ESC injury model. The miR-150-5p mimic promoted TGF-β1-induced ESC fibrosis. Conclusion ADSC-Exos mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p, which suggests that lncRNA-MIAT from ADSC-Exos may be a viable treatment for endometrial fibrosis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chendong Wan
- Department of Obstetrics and Gynecology, Fourth People's Hospital of Yixing City, Wuxi, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|