1
|
Xu Y, Li C, Cheng L, Wang S, Wu Y, Li S, Liu M, Tao X. Prognostic and diagnostic value of circRNA expression in cervical cancer: a meta analysis. Front Oncol 2025; 14:1488040. [PMID: 39871946 PMCID: PMC11769824 DOI: 10.3389/fonc.2024.1488040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/13/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction Cervical cancer (CC) is a highly prevalent malignancy of the reproductive system. This study aimed to methodically assess the function of circular RNAs (circRNAs) as possible indicators of CC, with a specific emphasis on their usefulness in the identification, prediction, and correlation with clinicopathological elements. Methods A comprehensive literature search was conducted using databases such as PubMed, Cochrane Library, Web of Science, Embase, and the China National Knowledge Infrastructure (CNKI). The latest data were extracted on May 3rd, 2024. The diagnostic potential of circRNA expression was evaluated using a range of metrics including sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The importance of circRNAs was further evaluated in terms of clinical relevance, pathological features, and prognostic value using pooled odds ratios (ORs) and hazard ratios (HRs). Results The meta-analysis included 27 studies, which were categorised based on diagnostic applications (n=3), clinicopathological correlations (n=15), and prognostic evaluations (n=23). Elevated expression levels of oncogenic circRNAs were significantly associated with poor clinical indicators, including tumour size (odds ratio [OR] = 0.425, 95% confidence interval [CI]: 0.267-0.676), International Federation of Gynaecology and Obstetrics (FIGO) stage (OR = 0.315, 95% CI: 0.224-0.443), and lymph node metastasis (OR = 2.975, 95% CI: 1.816-4.872). This upregulation of oncogenic circRNA was also identified as a predictor of worse survival outcomes, with a hazard ratio (HR) of 2.13 (95% CI: 1.73-2.62, P < 0.001). The downregulation of circRNAs with tumour-suppressor properties was similarly associated with poor clinical parameters, such as tumour size (OR = 0.310, 95% CI: 0.102-0.941), FIGO stage (OR = 0.231, 95% CI: 0.101-0.527), and lymph node metastasis (OR = 2.430, 95% CI: 1.156-5.110), and was indicative of a worsened prognosis (HR = 2.20, 95% CI: 1.03-4.70, P = 0.042). In terms of diagnostic value, the pooled sensitivity, specificity, and area under the curve (AUC) were calculated to be 0.85, 0.83, and 0.91, respectively. Conclusion The results of our meta-analysis indicate that circRNAs have the potential to serve as promising biomarkers for CC diagnosis, prognosis, and clinicopathology. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024544997.
Collapse
Affiliation(s)
- Yi Xu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
- Third Clinical Medical College, Nanchang University, Nanchang, China
| | - Changxia Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
- Third Clinical Medical College, Nanchang University, Nanchang, China
| | - Lifang Cheng
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Shaoheng Wang
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Yuqing Wu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Shiyang Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Mingqiang Liu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Tao
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Cao C, Zhang H, Zhang T, Nie C. Circular RNA NINL accelerates the malignant progression of cervical cancer. Discov Oncol 2024; 15:766. [PMID: 39692846 DOI: 10.1007/s12672-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE The study's aim was to explore a novel miRNA/mRNA network mediated by circNINL in cervical cancer (CC). METHODS Tumor tissue specimens and normal tissue specimens of 86 CC patients were collected. CircNINL, miR-2467-3p, and specificity protein 1 (SP1) expression levels in tissues were detected. In Hela cells, transfection was implemented to determine whether CircNINL, miR-2467-3p and SP1 regulated cellular progression. The interaction between circNINL, miR-2467-3p, and SP1 was explored. RESULTS CircNINL and SP1 were abnormally increased whereas miR-2467-3p expression was suppressed in CC. Functionally, circNINL silencing or miR-2467-3p overexpression reduced CC cell progression, whereas circNINL overexpression did the opposite. CircNINL had a spongy effect on miR-2467-3p to regulate SP1 levels. miR-2467-3p inhibition or SP1 overexpression offset the inhibitory effect of circNINL silence on CC malignant progression. CONCLUSION CircNINL silencing can increase miR-2467-3p, thereby inducing the downregulation of SP1, thereby suppressing CC progression.
Collapse
Affiliation(s)
- ChengCheng Cao
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Shandong, China
| | - HaiFeng Zhang
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Shandong, China
| | - Ting Zhang
- Department of Gynecology and Obstetrics, Sunshine Union Hospital, No. 9000, Yingqian Street, High-Tech Zone, Weifang, 261000, Shandong, China
| | - CuiCui Nie
- Department of Gynecology and Obstetrics, Sunshine Union Hospital, No. 9000, Yingqian Street, High-Tech Zone, Weifang, 261000, Shandong, China.
| |
Collapse
|
3
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer 2022; 21:148. [PMID: 35843942 PMCID: PMC9290271 DOI: 10.1186/s12943-022-01620-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 02/08/2023] Open
Abstract
The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital & Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
Najafi S. Circular RNAs as emerging players in cervical cancer tumorigenesis; A review to roles and biomarker potentials. Int J Biol Macromol 2022; 206:939-953. [PMID: 35318084 DOI: 10.1016/j.ijbiomac.2022.03.103] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023]
Abstract
Cervical cancer is the most lethal gynecological cancer among women worldwide. Most of the patients are diagnosed at the advanced stages due to late diagnosis and lack of accessible and valuable approaches for early detection of the disease. Circular RNAs (circRNAs) are a distinguishable class of non-coding RNAs with characteristic loop structures. Although their function has not been completely elucidated; however, recent evidence has suggested regulatory functions for circRNAs on gene expression controlling various biological functions like cell growth and apoptosis, development, embryogenesis, and pathogenesis of human diseases particularly cancers. Studies show the role of dysregulated circRNAs in biological processes including cell proliferation, migration, invasion, apoptosis, angiogenesis, and chemoresistance contributing to affect tumorigenesis in ovarian cancer cells, animal, and clinical studies. These effects can be defined as consistent with several tumorigenesis characteristics, which are defined as "hallmarks of cancer". Additionally, dysregulated circRNAs exhibit prognostic, and diagnostic potentials both in the prediction of prognosis in ovarian cancer patients, and also their discrimination from healthy individuals. Furthermore, targeting circRNAs has shown positive results in the suppression of malignant features of cancer cells, and also in overcoming chemoresistance. In this review, I have gathered the majority of studies evaluating the role of circRNAs in the development, and progression of cervical cancer, and also have discussed prognostic, diagnostic, and therapeutic potentials of circRNAs for clinical applications in cervical cancer patients.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wang K, Gu Y, Ni J, Zhang H, Wang Y, Zhang Y, Sun X, Xu T, Mao W, Peng B. Noncoding-RNA mediated high expression of zinc finger protein 268 suppresses clear cell renal cell carcinoma progression by promoting apoptosis and regulating immune cell infiltration. Bioengineered 2022; 13:10467-10481. [PMID: 35735115 PMCID: PMC9161828 DOI: 10.1080/21655979.2022.2060787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant kidney tumors with a poor prognosis. Accumulating evidence proves that zinc finger protein 268 (ZNF268) is associated with tumor progression, but the detailed regulatory functions of ZNF268 in ccRCC require further exploration. Thus, here we aim to characterize the role of ZNF268 in ccRCC. The clinical significance of ZNF268 was evaluated using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Subsequently, tumor-infiltrating immune cells, as well as upstream noncoding RNAs (ncRNAs) related to the tumor-suppressing function of ZNF268, were identified by in silico analyses. The expression of ZNF268 was significantly decreased in ccRCC samples compared with adjacent normal tissues. In addition, ZNF268 expression was negatively correlated with tumor progression and positively correlated with overall and disease-specific survival. TCGA and GTEx databases proved the potential tumor-suppressing function, which was measured both in vitro and in vivo after ZNF268 over-expression. Overexpression of ZNF268 effectively inhibited the proliferation, migration, invasion and promotied apoptosis of the Caki-1. The level of ZNF268 was positively related to the immune cell infiltration in the tumor. Moreover, we determined that the AC093157.1/miR-27a-3p axis can potentially regulate ZNF268 function in ccRCC. Our work describes a novel ncRNA-mediated ZNF268 function in ccRCC. ZNF268 acts as a tumor suppressor, and it is associated with apoptosis and immune cell infiltration in ccRCC.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Yongzhe Gu
- Department of Neurology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Jinliang Ni
- Shanghai Clinical College, Anhui Medical University, Hefei, Anhui Province, China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Yidi Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Xianchao Sun
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, Zha Bei Qu, China
- Shanghai Clinical College, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
RIG-I Promotes Cell Viability, Colony Formation, and Glucose Metabolism and Inhibits Cell Apoptosis in Colorectal Cancer by NF- κB Signaling Pathway. DISEASE MARKERS 2022; 2022:1247007. [PMID: 35242239 PMCID: PMC8888050 DOI: 10.1155/2022/1247007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/03/2022]
Abstract
Background Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I's detailed roles and mechanism in colorectal cancer (CRC) are uncovered. Methods qRT-PCR was used to detect the expression of RIG-I in CRC, adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus and cytoplasm. Results This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase isoform. 2.2-Deoxy-d-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion In summary, this study revealed that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.
Collapse
|