1
|
Dhori X, Gioiosa S, Gonfloni S. An integrated analysis of multiple datasets reveals novel gene signatures in human granulosa cells. Sci Data 2024; 11:972. [PMID: 39242561 PMCID: PMC11379948 DOI: 10.1038/s41597-024-03715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
Granulosa cells (GCs) play crucial roles in oocyte maturation. Through gap junctions and extracellular vesicles, they mediate the exchange of molecules such as microRNAs and messenger RNAs. Different ovarian cell types exhibit unique gene expression profiles, reflecting their specialized functions and stages. By combining RNA-seq data from various cell types forming the follicle, we aimed at capturing a wide range of expression patterns, offering insights into the functional diversity and complexity of the transcriptome regulation across GCs. Herein, we performed an integrated bioinformatics analysis of RNA sequencing datasets present in public databases, with a unique and standardized workflow., By combining the data from different studies, we successfully increased the robustness and reliability of our findings and discovered novel genes, miRNAs, and signaling pathways associated with GCs function and oocyte maturation. Moreover, our results provide a valuable resource for further wet-lab research on GCs biology and their impact on oocyte development and competence.
Collapse
Affiliation(s)
- Xhulio Dhori
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy
| | - Silvia Gioiosa
- CINECA, Super Computing Applications and Innovation Department, Via dei Tizii 6B, 000185, Roma, Italy.
| | - Stefania Gonfloni
- Department of Biology, University of Roma, via della Ricerca Scientifica 00133, Roma, Italy.
| |
Collapse
|
2
|
Liang L, Liang X, Yu X, Xiang W. Bioinformatic Analyses and Integrated Machine Learning to Predict prognosis and therapeutic response Based on E3 Ligase-Related Genes in colon cancer. J Cancer 2024; 15:5376-5395. [PMID: 39247594 PMCID: PMC11375543 DOI: 10.7150/jca.98723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and immune responses. Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. WGCNA and differential expression analysis were subsequently conducted. Consensus clustering identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒PCR assays were subsequently conducted. Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in cluster A were superior to those of patients in cluster B. We constructed a prognostic model with perfect predictive capability and validated it in internal and external colon cancer datasets. We discovered significant discrepancies in immune infiltration and immune checkpoints between different risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC cells. Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, which will help a lot in the advancement of better forecasting and therapeutic approaches.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Liang
- School of Clinical Medicine, Changsha Medical University, Changsha, China
| | - Xueke Yu
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Wanting Xiang
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
3
|
Nemours S, Armesto M, Arestín M, Manini C, Giustetto D, Sperga M, Pivovarcikova K, Pérez-Montiel D, Hes O, Michal M, López JI, Lawrie CH. Non-coding RNA and gene expression analyses of papillary renal neoplasm with reverse polarity (PRNRP) reveal distinct pathological mechanisms from other renal neoplasms. Pathology 2024; 56:493-503. [PMID: 38413252 DOI: 10.1016/j.pathol.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 02/29/2024]
Abstract
Papillary renal neoplasm with reversed polarity (PRNRP) is a recently described rare renal neoplasm. Traditionally, it was considered a variant of papillary renal cell carcinoma (PRCC). However, several studies reported significant differences between PRNRP and PRCC in terms of clinical, morphological, immunohistochemical and molecular features. Nonetheless, PRNRP remains a poorly understood entity. We used microarray analysis to elucidate the non-coding RNA (ncRNA) and gene expression profiles of 10 PRNRP cases and compared them with other renal neoplasms. Unsupervised cluster analysis showed that PRNRP had distinct expression profiles from either clear cell renal cell carcinoma (ccRCC) or PRCC cases at the level of ncRNA but were less distinct at the level of gene expression. An integrated omic approach determined miRNA:gene interactions that distinguished PRNRP from PRCC and we validated 10 differentially expressed miRNAs and six genes by quantitative RT-PCR. We found that levels of the miRNAs, miR-148a, miR-375 and miR-429, were up-regulated in PRNRP cases compared to ccRCC and PRCC. miRNA target genes, including KRAS and VEGFA oncogenes, and CXCL8, which regulates VEGFA, were also differentially expressed between renal neoplasms. Gene set enrichment analysis (GSEA) determined different activation of metabolic pathways between PRNRP and PRCC cases. Overall, this study is by far the largest molecular study of PRNRP cases and the first to investigate either ncRNA expression or their gene expression by microarray assays.
Collapse
MESH Headings
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/metabolism
- Middle Aged
- Female
- Male
- Aged
- RNA, Untranslated/genetics
- Gene Expression Profiling
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Gene Expression Regulation, Neoplastic
- Adult
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Stéphane Nemours
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - María Armesto
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - María Arestín
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, ASL Città di Torino, Turin, Italy; Department of Sciences of Public Health and Pediatrics, University of Turin, Italy
| | - Doriana Giustetto
- Department of Pathology, Maria Victoria Hospital, ASL Città di Torino, Turin, Italy
| | - Maris Sperga
- Department of Pathology, Stradin's University, Riga, Latvia
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Ondrej Hes
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Bioptical Laboratory Ltd, Pilsen, Czech Republic
| | - José I López
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Charles H Lawrie
- Biogipuzkoa Health Research Institute, Oncology Area, Molecular Oncology Group, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Sino-Swiss Institute of Advanced Technology (SSIAT), University of Shanghai, Shanghai, China; Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Bai HX, Qiu XM, Xu CH, Guo JQ. MiRNA-145-5p inhibits gastric cancer progression via the serpin family E member 1- extracellular signal-regulated kinase-1/2 axis. World J Gastrointest Oncol 2024; 16:2123-2140. [PMID: 38764835 PMCID: PMC11099451 DOI: 10.4251/wjgo.v16.i5.2123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate gene expression and play a critical role in cancer physiology. However, there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer (GC). AIM To investigate the role and molecular mechanism of miRNA-145-5p (miR145-5p) in the progression of GC. METHODS Real-time polymerase chain reaction (RT-PCR) was used to detect miRNA expression in human GC tissues and cells. The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays, respectively. Cell proliferation was measured using cell counting kit-8 and colony formation assays, and apoptosis was evaluated using flow cytometry. Expression of the epithelial-mesenchymal transition (EMT)-associated protein was determined by Western blot. Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system. Serpin family E member 1 (SERPINE1) expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining. The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis. The association between SERPINE1 and GC progression was also tested. A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p. The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice. RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA. Overexpression of miR-145-5p was associated with decreased GC cell proliferation, invasion, migration, and EMT, and these effects were reversed by forcing SERPINE1 expression. Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression. Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2 (ERK1/2). CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC. MiR-145-5p was found to affect GC cell proliferation, migration, and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
Collapse
Affiliation(s)
- Hong-Xia Bai
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan 250000, Shandong Province, China
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong Province, China
| | - Xue-Mei Qiu
- Department of Reproductive Center, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang 277000, Shandong Province, China
| | - Chun-Hong Xu
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng 252000, Shandong Province, China
| | - Jian-Qiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan 250000, Shandong Province, China
| |
Collapse
|
5
|
Yuan K, Hu D, Mo X, Zeng R, Wu B, Zhang Z, Hu R, Wang C. Novel diagnostic biomarkers of oxidative stress, immune- infiltration characteristics and experimental validation of SERPINE1 in colon cancer. Discov Oncol 2023; 14:206. [PMID: 37980291 PMCID: PMC10657345 DOI: 10.1007/s12672-023-00833-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a prevalent malignant tumor that affects the colon in the gastrointestinal tract. Its aggressive nature, strong invasiveness, and rapid progression make it a significant health concern. In addition, oxidative stress can lead to the production of reactive oxygen species (ROS) that surpass the body's antioxidant defense capacity, causing damage to proteins, lipids, and DNA, potentially promoting tumor development. However, the relationship between CC and oxidative stress requires further investigation. METHODS We collected gene expression data and clinical data from 473 CC patients from The Cancer Genome Atlas (TCGA) dataset. Additionally, we obtained 433 oxidative stress genes from Genecards ( https://www.genecards.org/ ). Using univariate, multivariate, and LASSO Cox regression analyses, we developed predictive models for oxidative stress-related genes in CC patients. To validate the models, we utilized data from the Gene Expression Omnibus (GEO) database. We assessed the accuracy of the models through various techniques, including the creation of a nomogram, receiver operating characteristic curve (ROC) analysis, and principal component analysis (PCA). The Cytoscape program was utilized to identify hub genes among differentially expressed genes (DEGs) in tumor patients using the TCGA dataset. Subsequently, we conducted survival analysis, clinical relevance analysis, and immune cell relevance analysis for the intersected genes obtained by combining the hub genes with the genes from the predictive models. Moreover, we investigated the mRNA expression and potential functions of these intersected genes using a range of experimental approaches. RESULTS In both the TCGA and GSE17538 datasets, patients classified as high-risk had significantly shorter overall survival compared to those in the low-risk group (TCGA: p < 0.001; GSE17538: p = 0.010). As a result, we decided to further investigate the role of SERPINE1. Our survival analysis revealed that patients with high expression of SERPINE1 had a significantly lower probability of survival compared to those with low expression (p < 0.05). Additionally, our clinical correlation analysis showed a significant relationship between SERPINE1 expression and T, N, and M stages, as well as tumor grade. Furthermore, our immune infiltration correlation analysis demonstrated notable differences in multiple immune cells between the high- and low-expression groups of SERPINE1. To validate our findings, we conducted experimental tests and observed that knocking down SERPINE1 in colon cancer cells resulted in significant reductions in cell viability and proliferation. Interestingly, we also noticed an increase in oxidative stress parameters, such as ROS and MDA levels, while the levels of reduced GSH decreased upon SERPINE1 knockdown. These findings suggest that the antineoplastic effect of silencing SERPINE1 may be associated with the induction of oxidative stress. CONCLUSION In conclusion, this study introduces a new approach for the early diagnosis and treatment of CC, and further exploration of SERPINE1 could potentially lead to a significant advancement.
Collapse
Affiliation(s)
- Kaisheng Yuan
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Di Hu
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Xiaocong Mo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Ruiqi Zeng
- Department of Urology, the Second People's Hospital of Yibin City, Yibin, 644000, Sichuan, China
| | - Bing Wu
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Zunhao Zhang
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Ruixiang Hu
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China.
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, 510000, Guangdong, China.
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China.
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
6
|
Martino E, Balestrieri A, Aragona F, Bifulco G, Mele L, Campanile G, Balestrieri ML, D’Onofrio N. MiR-148a-3p Promotes Colorectal Cancer Cell Ferroptosis by Targeting SLC7A11. Cancers (Basel) 2023; 15:4342. [PMID: 37686618 PMCID: PMC10486764 DOI: 10.3390/cancers15174342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Ferroptosis, an iron-dependent form of cell death, and dysregulated microRNA (miRNA) expression correlate with colorectal cancer (CRC) development and progression. The tumor suppressor ability of miR-148a-3p has been reported for several cancers. Nevertheless, the role of miR-148a-3p in CRC remains largely undetermined. Here, we aim at investigating the molecular mechanisms and regulatory targets of miR-148a-3p in the CRC cell death mechanism(s). To this end, miR-148a-3p expression was evaluated in SW480 and SW620 cells and normal colon epithelial CCD 841 CoN cells with quantitative real-time polymerase chain reaction (qRT-PCR). Data reported a reduction of miR-148a-3p expression in SW480 and SW620 cells compared to non-tumor cells (p < 0.05). Overexpression of miR-148a selectively inhibited CRC cell viability (p < 0.001), while weakly affecting normal CCD 841 CoN cell survival (p < 0.05). At the cellular level, miR-148a-3p mimics promoted apoptotic cell death via caspase-3 activation (p < 0.001), accumulation of mitochondrial reactive oxygen species (ROS) (p < 0.001), and membrane depolarization (p < 0.001). Moreover, miR-148a-3p overexpression induced lipid peroxidation (p < 0.01), GPX4 downregulation (p < 0.01), and ferroptosis (p < 0.01), as revealed by intracellular and mitochondrial iron accumulation and ACSL4/TFRC/Ferritin modulation. In addition, levels of SLC7A11 mRNA and protein, the cellular targets of miR-148a-3p predicted by bioinformatic tools, were suppressed by miR-148a-3p's overexpression. On the contrary, the downregulation of miR-148a-3p boosted SLC7A11 gene expression and suppressed ferroptosis. Together, these in vitro findings reveal that miR-148a-3p can function as a tumor suppressor in CRC by targeting SLC7A11 and activating ferroptosis, opening new perspectives for the rationale of therapeutic strategies through targeting the miR-148a-3p/SLC7A11 pathway.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Francesca Aragona
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| |
Collapse
|
7
|
Guo X, Sun Z, Chen H, Ling J, Zhao H, Chang A, Zhuo X. SERPINE1 as an Independent Prognostic Marker and Therapeutic Target for Nicotine-Related Oral Carcinoma. Clin Exp Otorhinolaryngol 2023; 16:75-86. [PMID: 36510682 PMCID: PMC9985984 DOI: 10.21053/ceo.2022.01480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Nicotine is an ingredient of tobacco, and exposure to nicotine increases the risks of various cancers, including oral cancer. Previous studies have focused on the addictive properties of nicotine, but its carcinogenic mechanism has rarely been studied. We aimed to explore the key genes in the process through which nicotine promotes the occurrence and development of oral cancer via data mining and experimental verification. METHODS This study involved three parts. First, key genes related to nicotine-related oral cancer were screened through data mining; second, the expression and clinical significance of a key gene in oral cancer tissues were verified by bioinformatics. Finally, the expression and clinical significance of the key gene in oral cancer were histologically investigated, and the effects of its expression on cell proliferation, invasion, and drug resistance were cytologically assessed. RESULTS SERPINE1 was identified as the key gene, which was upregulated in nicotine-treated oral cells and may be an independent prognostic factor for oral cancer. SERPINE1 was enriched in various pathways, such as the tumor necrosis factor and apelin pathways, and was related to the infiltration of macrophages, CD4+T cells, and CD8+T cells. Overexpression of SERPINE1 was associated with N staging and may be involved in hypoxia, angiogenesis, and metastasis. Knockdown of SERPINE1 in oral cancer cells resulted in weakened cell proliferation and invasion ability and increased sensitivity to bleomycin and docetaxel. CONCLUSION This study revealed SERPINE1 as a key gene for nicotine-related oral cancer, indicating that SERPINE1 may be a novel prognostic indicator and therapeutic target for oral carcinoma.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huarong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Aoshuang Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Chang J, Xiao G, Zhu W, Ding M, Liao H, Wang Q. MicroRNA-10a-5p targets SERPINE1 to suppress cell progression and epithelial–mesenchymal transition process in clear cell renal cell carcinoma. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhou R, Gao Z, Ju Y. Novel six-gene prognostic signature based on colon adenocarcinoma immune-related genes. BMC Bioinformatics 2022; 23:418. [PMID: 36221049 PMCID: PMC9552517 DOI: 10.1186/s12859-022-04909-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common gastrointestinal tumors worldwide, and immunotherapy is one of the most promising treatments for it. Identifying immune genes involved in the development and maintenance of cancer is key to the use of tumor immunotherapy. This study aimed to determine the prognostic value of immune genes in patients with COAD and to establish an immune-related gene signature. Differentially expressed genes, immune-related genes (DEIGs), and transcription factors (DETFs) were screened using the following databases: Cistrome, The Cancer Genome Atlas (TCGA), the Immunology Database and Analysis Portal, and InnateDB. We constructed a network showing the regulation of DEIGs by DETFs. Using weighted gene co-expression network analysis, we prepared 5 co-expressed gene modules; 6 hub genes (CD1A, CD1B, FGF9, GRP, SERPINE1, and F2RL2) obtained using univariate and multivariate regression analysis were used to construct a risk model. Patients from TCGA database were divided into high- and low-risk groups based on whether their risk score was greater or less than the mean; the public dataset GSE40967, which contains gene expression profiles of 566 colon cancer patients, was used for validation. Results Survival analysis, somatic gene mutations, and tumor-infiltrating immune cells differed significantly between the high- and low-risk groups. Conclusions This immune-related gene signature could play an important role in guiding treatment, making prognoses, and potentially developing future clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04909-2.
Collapse
Affiliation(s)
- Rui Zhou
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China
| | - Zhuowei Gao
- Medical Department of Traditional Chinese Medicine, Shunde Hospital of Guangzhou University of Traditional Chinese Medicine, No. 12, Jinsha Avenue, Shunde District, Foshan, 510006, Guangdong, China
| | - Yongle Ju
- Surgical Department of Gastrointestinal Surgery, Shunde Hospital of Southern Medical University, No. 1 Jiazi Road, Shunde District, Foshan, 528399, Guangdong, China.
| |
Collapse
|
10
|
Zhang Y, Hu X. miR‑148a promotes cell sensitivity through downregulating SOS2 in radiation‑resistant non‑small cell lung cancer cells. Oncol Lett 2022; 23:135. [PMID: 35251354 PMCID: PMC8895464 DOI: 10.3892/ol.2022.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer; however, radioresistance is a significant barrier in NSCLC radiotherapy. MicroRNA (miR)-148a has been reported to be a tumor suppressor in various types of cancer, including NSCLC. In the present study, the potential role of miR-148a in regulating radiosensitivity of NSCLC cells was investigated. Serum miR-148a expression was evaluated by reverse transcription-quantitative PCR in patients with NSCLC and healthy controls. The effects of miR-148a on cell viability, migration and invasion were assessed by Cell Counting Kit-8 and Transwell assays in radiation-resistant NSCLC cells. Serum miR-148a was downregulated in patients with NSCLC compared with healthy controls and its expression was significantly increased after radiotherapy. By contrast, miR-148a expression was decreased in the radioresistant patients compared with the radiosensitivity patients. Additionally, miR-148a overexpression inhibited the cell proliferation, migration and invasion of radiation-resistant NSCLC cells. In addition, miR-148a had putative binding site with Son of Sevenless 2 (SOS2) and negatively regulated SOS2 expression. Silencing SOS2 expression significantly suppressed miR-148a inhibitor-induced increase in radiosensitivity in NSCLC. In conclusion, the results of the present study suggested that miR-148a could enhance the radiosensitivity of NSCLC cells through targeting SOS2, thus providing potential therapeutic targets to improve radiotherapy in NSCLC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaoqian Hu
- Department of Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|