1
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
2
|
Shroff RT, Bachini M. Treatment options for biliary tract cancer: unmet needs, new targets and opportunities from both physicians' and patients' perspectives. Future Oncol 2024; 20:1435-1450. [PMID: 38861288 PMCID: PMC11376410 DOI: 10.1080/14796694.2024.2340959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/05/2024] [Indexed: 06/12/2024] Open
Abstract
Biliary tract cancer (BTC) is a rare cancer with poor prognosis, characterized by considerable pathophysiological and molecular heterogeneity. While this makes it difficult to treat, it also provides targeted therapy opportunities. Current standard-of-care is chemotherapy ± immunotherapy, but several targeted agents have recently been approved. The current investigational landscape in BTC emphasizes the importance of biomarker testing at diagnosis. MDM2/MDMX are important negative regulators of the tumor suppressor p53 and provide an additional target in BTC (∼5-8% of tumors are MDM2-amplified). Brigimadlin (BI 907828) is a highly potent MDM2-p53 antagonist that has shown antitumor activity in preclinical studies and promising results in early clinical trials; enrollment is ongoing in a potential registrational trial for patients with BTC.
Collapse
Affiliation(s)
- Rachna T Shroff
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| | - Melinda Bachini
- Cholangiocarcinoma Foundation, 5526 West 13400 South, #510, Herriman, UT USA
| |
Collapse
|
3
|
Akiba J, Ogasawara S, Yano H. Genetic Analyses of Primary Liver Cancer Cell Lines: Correspondence With Morphological Features of Original Tumors. Cancer Genomics Proteomics 2024; 21:260-271. [PMID: 38670592 PMCID: PMC11059599 DOI: 10.21873/cgp.20445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Advancements in genetic analysis technologies have led to establishment of molecular classifications systems for primary liver cancers. The correlation between pathological morphology and genetic mutations in hepatocellular carcinoma (HCC) is becoming increasingly evident. To construct appropriate experimental models, it is crucial to select cell lines based on their morphology and genetic mutations. In this study, we conducted comprehensive genetic analyses of primary liver cancer cell lines and examined their correlations with morphology. MATERIALS AND METHODS Thirteen primary liver cancer cell lines established in our Department were investigated. Eleven cell lines were HCC cell lines, whereas 2 were combined hepatocellular-cholangiocarcinoma (CHC) cell line characteristics. Whole exome sequencing and fusion gene analyses were conducted using a next generation sequencing platform. We also examined correlations between cell mutations and morphological findings and conducted experiments to clarify the association between morphological findings and genetic alterations. RESULTS Mutations in TP53, HMCN1, PCLO, HYDIN, APOB, and EYS were found in 11, 5, 4, 4, 3, and 3 cell lines, respectively. CTNNB1 mutation was not identified in any cell line. The original tumor of four cell lines (KYN-1, KYN-2, KYN-3, and HAK-6) showed morphologically macrotrabecular massive patterns and these cell lines harbor TP53 mutations. Two cell lines (KYN-2 and KMCH-2) showed an extremely high tumor mutation burden. These two cell lines possess ultra-mutations associated with DNA repair and/or DNA polymerase. CONCLUSION The study identified correlations between morphological findings and genetic mutations in several HCC cell lines. Cell lines with unique genetic mutations were found. This information will be a valuable tool for the selection of suitable experimental models in HCC research.
Collapse
Affiliation(s)
- Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan;
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University, School of Medicine, Fukuoka, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University, School of Medicine, Fukuoka, Japan
| |
Collapse
|
4
|
Yang X, Lian B, Zhang N, Long J, Li Y, Xue J, Chen X, Wang Y, Wang Y, Xun Z, Piao M, Zhu C, Wang S, Sun H, Song Z, Lu L, Dong X, Wang A, Liu W, Pan J, Hou X, Guan M, Huo L, Shi J, Zhang H, Zhou J, Lu Z, Mao Y, Sang X, Wu L, Yang X, Wang K, Zhao H. Genomic characterization and immunotherapy for microsatellite instability-high in cholangiocarcinoma. BMC Med 2024; 22:42. [PMID: 38281914 PMCID: PMC10823746 DOI: 10.1186/s12916-024-03257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systematically investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA. METHODS We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were analyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients with advanced CCA. RESULTS Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a significantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiving PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy. CONCLUSIONS MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H and positive PD-L1 expression were associated with improved both OS and PFS. TRIAL REGISTRATION This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).
Collapse
Affiliation(s)
- Xu Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgery, Peking, Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingnan Xue
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangqi Chen
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunchao Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanyu Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenpei Zhu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huishan Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | - Jie Pan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaorong Hou
- Department of Radiotherapy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Guan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Shi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhui Lu
- Hepatobiliary and Pancreatic Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Yilei Mao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqun Wu
- Liver Disease Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kai Wang
- OrigiMed Co., Ltd, Shanghai, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Li X, Zhou E, Zhao C, Cui B, Dong X, Du H, Lin X. Adjuvant chemotherapy combined with immunotherapy in patients with cholangiocarcinoma after radical resection. Cancer Med 2023; 12:21742-21750. [PMID: 38059559 PMCID: PMC10757079 DOI: 10.1002/cam4.6738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The malignancy of cholangiocarcinoma is highly pronounced, and it exhibits a propensity for recurrence and metastasis even in the presence of standard chemotherapy. The efficacy of adjuvant chemotherapy combined with immunotherapy in patients with resected cholangiocarcinoma needs to be substantiated. METHODS Data from 101 patients with cholangiocarcinoma treated at the Sun Yat-sen University Cancer Center between 2015 and 2020 were studied. RESULTS After propensity score matching, there were no significant differences in baseline characteristics between patients in the combined adjuvant chemotherapy and immunotherapy group (AC + IM group) and the adjuvant chemotherapy alone group (AC group) (all p > 0.05). The AC + IM group demonstrated a statistically significant improvement in relapse-free survival (RFS) compared to the AC group (p = 0.032). Likewise, the AC + IM group exhibited a significantly superior overall survival (OS) outcome when compared to the AC group (p = 0.044). Multivariate Cox analysis unveiled perineural invasion (p = 0.041), lymph node metastasis (p = 0.006), and postoperative immunotherapy (p = 0.008) as independent prognostic factors exerting a significant impact on the OS of patients. In the cohort of patients with perineural invasion, the AC + IM group exhibited significantly improved OS compared to the AC group (p = 0.0077). Similarly, within the subset of patients with lymph node metastasis, the AC + IM group exhibited a significantly superior OS outcome when compared to the AC group (p = 0.023). CONCLUSION Combining postoperative adjuvant chemotherapy with immunotherapy extends the RFS and OS of patients with cholangiocarcinoma following radical resection.
Collapse
Affiliation(s)
- Xiao‐hui Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - En‐liang Zhou
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chong‐yu Zhao
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Army Medical UniversityChongqingChina
| | - Bo‐kang Cui
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xiao‐yuan Dong
- Department of GynecologyGuangdong Hydropower HospitalGuangzhouChina
| | - Hang Du
- Reproductive and Genetic Medicine CenterDalian Women and Children's Medical GroupDalianChina
| | - Xiao‐jun Lin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
6
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
7
|
Storandt MH, Kurniali PC, Mahipal A, Jin Z. Targeted Therapies in Advanced Cholangiocarcinoma. Life (Basel) 2023; 13:2066. [PMID: 37895447 PMCID: PMC10608206 DOI: 10.3390/life13102066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Primary tumor resection and liver transplantation are the only curative treatment options for the management of cholangiocarcinoma (CCA). However, for patients with advanced or metastatic disease, palliative systemic therapy remains the only treatment option. The development of targeted therapeutics has begun to shift the treatment paradigm in CCA. Targets of interest in CCA include mutated isocitrate dehydrogenase-1 (mIDH-1), human epidermal growth factor receptor 2 (HER2) overexpression/amplification, and fibroblast growth factor receptor 2 (FGFR2) fusion, in addition to less frequently observed targets such as BRAF V600E, deficient mismatch repair/high microsatellite instability (dMMR/MSI-H), and high tumor mutation burden (TMB-H). These targets are observed in varying frequency among patients with intrahepatic CCA and extrahepatic CCA. Multiple novel therapies have been developed to exploit each of these targets, with some having received United States Food and Drug Administration approval for use in the second-line setting. In the current review, we discuss targets of interest in CCA and summarize current evidence evaluating available therapies directed at these targets.
Collapse
Affiliation(s)
| | - Peter C. Kurniali
- Department of Hematology/Medical Oncology, Sanford Cancer Center, Bismarck, ND 58501, USA;
- Department of Internal Medicine, Division of Hematology/Oncology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Amit Mahipal
- Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Zhaohui Jin
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Frega G, Cossio FP, Banales JM, Cardinale V, Macias RIR, Braconi C, Lamarca A. Lacking Immunotherapy Biomarkers for Biliary Tract Cancer: A Comprehensive Systematic Literature Review and Meta-Analysis. Cells 2023; 12:2098. [PMID: 37626908 PMCID: PMC10453268 DOI: 10.3390/cells12162098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immunotherapy has recently been incorporated into the spectrum of biliary tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order to identify those patients who may benefit most from this novel treatment option. Here, we propose a systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker expression levels in patients with BTC. METHODS Prisma guidelines were followed for this systematic review and meta-analysis. Eligible studies were searched on PubMed. Studies published between 2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in patients with BTC, were considered eligible. RESULTS A total of 61 eligible studies were identified. Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI 21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in intrahepatic cholangiocarcinomas (iCCAs-15 studies), perihilar-distal CCAs (p/dCCAs-7 studies), and gallbladder cancer (GBC-5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and 2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively. CONCLUSION From our analysis, PD-L1 expression was found to occur approximately in 26% of BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with mismatch-proficient tumors, and we must need to make an effort to conceive new prospective biomarker discovery studies.
Collapse
Affiliation(s)
- Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Fernando P. Cossio
- Department of Organic Chemistry I, Center of Innovation in Advanced Chemistry (ORFEO-CINQA), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 48940 Donostia-San Sebastian, Spain;
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, 48940 San Sebastian, Spain;
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy;
| | - Rocio I. R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, 37007 Salamanca, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
| | - Angela Lamarca
- Department of Oncology—OncoHealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
9
|
Kawamura E, Matsubara T, Kawada N. New Era of Immune-Based Therapy in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2023; 15:3993. [PMID: 37568808 PMCID: PMC10417782 DOI: 10.3390/cancers15153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (CC) accounts for approximately 20% of all biliary tract cancer (BTC) cases and 10-15% of all primary liver cancer cases. Many patients are diagnosed with unresectable BTC, and, even among patients with resectable BTC, the 5-year survival rate is approximately 20%. The BTC incidence rate is high in Southeast and East Asia and has increased worldwide in recent years. Since 2010, cytotoxic chemotherapy, particularly combination gemcitabine + cisplatin (ABC-02 trial), has been the first-line therapy for patients with BTC. In 2022, a multicenter, double-blind, randomized phase 3 trial (TOPAZ-1 trial) examined the addition of programmed death-ligand 1 immunotherapy (durvalumab) to combination gemcitabine + cisplatin for BTC treatment, resulting in significantly improved survival without notable additional toxicity. As a result of this trial, this three-drug combination has become the new standard first-line therapy, leading to notable advances in BTC management for the first time since 2010. The molecular profiling of BTC has continued to drive the development of new targeted therapies for use when first-line therapies fail. Typically, second-line therapy decisions are based on identified genomic alterations in tumor tissue. Mutations in fibroblast growth factor receptor 1/2/3, isocitrate dehydrogenase 1/2, and neurotrophic tyrosine receptor kinase A/B/C are relatively frequent in intrahepatic CC, and precision medicines are available that can target associated pathways. In this review, we suggest strategies for systemic pharmacotherapy with a focus on intrahepatic CC, in addition to presenting the results and safety outcomes of clinical trials evaluating immune checkpoint inhibitor therapies in BTC.
Collapse
Affiliation(s)
- Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|