1
|
Chen M, Yang Y, Chen S, He Z, Du L. Targeting squalene epoxidase in the treatment of metabolic-related diseases: current research and future directions. PeerJ 2024; 12:e18522. [PMID: 39588004 PMCID: PMC11587872 DOI: 10.7717/peerj.18522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
Metabolic-related diseases are chronic diseases caused by multiple factors, such as genetics and the environment. These diseases are difficult to cure and seriously affect human health. Squalene epoxidase (SQLE), the second rate-limiting enzyme in cholesterol synthesis, plays an important role in cholesterol synthesis and alters the gut microbiota and tumor immunity. Research has shown that SQLE is expressed in many tissues and organs and is involved in the occurrence and development of various metabolic-related diseases, such as cancer, nonalcoholic fatty liver disease, diabetes mellitus, and obesity. SQLE inhibitors, such as terbinafine, NB598, natural compounds, and their derivatives, can effectively ameliorate fungal infections, nonalcoholic fatty liver disease, and cancer. In this review, we provide an overview of recent research progress on the role of SQLE in metabolic-related diseases. Further research on the regulation of SQLE expression is highly important for developing drugs for the treatment of metabolic-related diseases with good pharmacological activity.
Collapse
Affiliation(s)
- Mingzhu Chen
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yongqi Yang
- Harbin Medical University, Department of Pharmacology, College of Pharmacy, Harbin, Heilongjiang Province, China
| | - Shiting Chen
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhigang He
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| | - Lian Du
- School of Basic Medical Sciences, Chengdu University of Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Provera A, Vecchio C, Sheferaw AN, Stoppa I, Pantham D, Dianzani U, Sutti S. From MASLD to HCC: What's in the middle? Heliyon 2024; 10:e35338. [PMID: 39170248 PMCID: PMC11336632 DOI: 10.1016/j.heliyon.2024.e35338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic dysfunction associated steatotic liver disease (MASLD) is a progressive pathological condition characterized by the accumulation of triglycerides within hepatocytes that causes histological changes, which, in the long run, might compromise liver functional capacities. MASLD predisposes to metabolic dysfunction-associated steatohepatitis (MASH), in which the persistence of inflammatory reactions perpetuates tissue injury and induces alterations of the extracellular matrix, leading to liver fibrosis and cirrhosis. Furthermore, these processes are also fertile ground for the development of hepatocellular carcinoma (HCC). In this latter respect, growing evidence suggests that chronic inflammation not only acts as the primary stimulus for hepatocellular malignant transformation, cell proliferation and cancer cell progression but also reshapes the immune landscape, inducing immune system exhaustion and favoring the loss of cancer immune surveillance. Therefore, a thorough understanding of the cellular and molecular mechanisms orchestrating hepatic inflammatory responses may open the way for fine-tuning therapeutic interventions that could, from one side, counteract MASLD progression and, on the other one, effectively treat HCCs.
Collapse
Affiliation(s)
- Alessia Provera
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Cristina Vecchio
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Anteneh Nigussie Sheferaw
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
3
|
Tzorakoleftheraki SE, Koletsa T. The Complex Role of Mast Cells in Head and Neck Squamous Cell Carcinoma: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1173. [PMID: 39064602 PMCID: PMC11279237 DOI: 10.3390/medicina60071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous malignancy influenced by various genetic and environmental factors. Mast cells (MCs), typically associated with allergic responses, have recently emerged as key regulators of the HNSCC tumor microenvironment (TME). This systematic review explores the role of MCs in HNSCC pathogenesis and their potential as prognostic markers and therapeutic targets. Materials and Methods: A systematic search was conducted in the PubMed, Scopus and ClinicalTrials.gov databases until 31 December 2023, using "Mast cells" AND "Head and neck squamous cell carcinoma" as search terms. Studies in English which reported on MCs and HNSCC were included. Screening, data extraction and analysis followed PRISMA guidelines. No new experiments were conducted. Results: Out of 201 articles, 52 studies met the inclusion criteria, 43 of which were published between 2020 and 2023. A total of 28821 HNSCC and 9570 non-cancerous tissue samples had been examined. MC density and activation varied among normal tissues and HNSCC. Genetic alterations associated with MCs were identified, with specific gene expressions correlating with prognosis. Prognostic gene signatures associated with MC density were established. Conclusions: MCs have arisen as multifaceted TME modulators, impacting various aspects of HNSCC development and progression. Possible site-specific or HPV-related differences in MC density and activation should be further elucidated. Despite conflicting findings on their prognostic role, MCs represent promising targets for novel therapeutic strategies, necessitating further research and clinical validation for personalized HNSCC treatment.
Collapse
Affiliation(s)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Coates HW, Nguyen TB, Du X, Olzomer EM, Farrell R, Byrne FL, Yang H, Brown AJ. The constitutively active form of a key cholesterol synthesis enzyme is lipid droplet-localized and upregulated in endometrial cancer tissues. J Biol Chem 2024; 300:107232. [PMID: 38537696 PMCID: PMC11061744 DOI: 10.1016/j.jbc.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Cholesterol is essential for both normal cell viability and cancer cell proliferation. Aberrant activity of squalene monooxygenase (SM, also known as squalene epoxidase), the rate-limiting enzyme of the committed cholesterol synthesis pathway, is accordingly implicated in a growing list of cancers. We previously reported that hypoxia triggers the truncation of SM to a constitutively active form, thus preserving sterol synthesis during oxygen shortfalls. Here, we show SM truncation is upregulated and correlates with the magnitude of hypoxia in endometrial cancer tissues, supporting the in vivo relevance of our earlier work. To further investigate the pathophysiological consequences of SM truncation, we examined its lipid droplet-localized pool using complementary immunofluorescence and cell fractionation approaches and found that it exclusively comprises the truncated enzyme. This partitioning is facilitated by the loss of an endoplasmic reticulum-embedded region at the SM N terminus, whereas the catalytic domain containing membrane-associated C-terminal helices is spared. Moreover, we determined multiple amphipathic helices contribute to the lipid droplet localization of truncated SM. Taken together, our results expand on the striking differences between the two forms of SM and suggest upregulated truncation may contribute to SM-related oncogenesis.
Collapse
Affiliation(s)
- Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Tina B Nguyen
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Ellen M Olzomer
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Rhonda Farrell
- Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia; Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Zhang L, Cao Z, Hong Y, He H, Chen L, Yu Z, Gao Y. Squalene Epoxidase: Its Regulations and Links with Cancers. Int J Mol Sci 2024; 25:3874. [PMID: 38612682 PMCID: PMC11011400 DOI: 10.3390/ijms25073874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuheng Hong
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
Shao M, Wang M, Wang X, Feng X, Zhang L, Lv H. SQLE is a promising prognostic and immunological biomarker and correlated with immune Infiltration in Sarcoma. Medicine (Baltimore) 2024; 103:e37030. [PMID: 38335381 PMCID: PMC10861000 DOI: 10.1097/md.0000000000037030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.
Collapse
Affiliation(s)
- Mengwei Shao
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mingbo Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiaodong Feng
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lifeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Huicheng Lv
- Department of Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
7
|
Wu J, Hu W, Yang W, Long Y, Chen K, Li F, Ma X, Li X. Knockdown of SQLE promotes CD8+ T cell infiltration in the tumor microenvironment. Cell Signal 2024; 114:110983. [PMID: 37993027 DOI: 10.1016/j.cellsig.2023.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Weibin Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Wenhui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, South China Normal University, Guangzhou 510631, China.
| | - Xun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
8
|
Liang J, Li L, Li L, Zhou X, Zhang Z, Huang Y, Xiao X. Lipid metabolism reprogramming in head and neck cancer. Front Oncol 2023; 13:1271505. [PMID: 37927468 PMCID: PMC10622980 DOI: 10.3389/fonc.2023.1271505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Lipid metabolism reprogramming is one of the most prominent metabolic anomalies in cancer, wherein cancer cells undergo dysregulation of lipid metabolism to acquire adequate energy, cell membrane building blocks, as well as signaling molecules essential for cell proliferation, survival, invasion, and metastasis. These adaptations enable cancer cells to effectively respond to challenges posed by the tumor microenvironment, leading to cancer therapy resistance and poor cancer prognosis. Head and neck cancer, ranking as the seventh most prevalent cancer, exhibits numerous abnormalities in lipid metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification System and cancer risk factors, the present review delves into the dysregulated molecules and pathways participating in the process of lipid uptake, biosynthesis, transportation, and catabolism. We also present an overview of the latest advancements in understanding alterations in lipid metabolism and how they intersect with the carcinogenesis, development, treatment, and prognosis of head and neck cancer. By shedding light on the significance of metabolic therapy, we aspire to improve the overall prognosis and treatment outcomes of head and neck cancer patients.
Collapse
Affiliation(s)
- Jinfeng Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Limei Li
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| | - Yi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
| |
Collapse
|
9
|
Burkitt K. Role of DNA Methylation Profiles as Potential Biomarkers and Novel Therapeutic Targets in Head and Neck Cancer. Cancers (Basel) 2023; 15:4685. [PMID: 37835379 PMCID: PMC10571524 DOI: 10.3390/cancers15194685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with high mortality. The main reasons for treatment failure are a low rate of early diagnosis, high relapse rates, and distant metastasis with poor outcomes. These are largely due to a lack of diagnostic, prognostic, and predictive biomarkers in HNSCC. DNA methylation has been demonstrated to play an important role in the pathogenesis of HNSCC, and recent studies have also valued DNA methylation as a potential biomarker in HNSCC. This review summarizes the current knowledge on DNA methylation profiles in HPV-positive and HPV-negative HNSCC and how these may contribute to the pathogenesis of HNSCC. It also summarizes the potential value of DNA methylation as a biomarker in the diagnosis, prognosis, and prediction of the response to therapy. With the recent immunotherapy era in head and neck treatment, new strategies to improve immune responses by modulating TIMEs have been intensely investigated in early-phase trials. Therefore, this study additionally summarizes the role of DNA methylation in the regulation of TIMEs and potential predictive immunotherapy response biomarkers. Finally, this study reviews ongoing clinical trials using DNA methylation inhibitors in HNSCC.
Collapse
Affiliation(s)
- Kyunghee Burkitt
- Head and Neck Medical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
11
|
Zhou Z, Tang J, Lu Y, Jia J, Luo T, Su K, Dai X, Zhang H, Liu O. Prognosis-related molecular subtyping in head and neck squamous cell carcinoma patients based on glycolytic/cholesterogenic gene data. Cancer Cell Int 2023; 23:37. [PMID: 36841765 PMCID: PMC9960414 DOI: 10.1186/s12935-023-02880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/19/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) remains an unmet medical challenge. Metabolic reprogramming is a hallmark of diverse cancers, including HNSCC. METHODS We investigated the metabolic profile in HNSCC by using The Cancer Genome Atlas (TCGA) (n = 481) and Gene Expression Omnibus (GEO) (n = 97) databases. The metabolic stratification of HNSCC samples was identified by using unsupervised k-means clustering. We analyzed the correlations of the metabolic subtypes in HNSCC with featured genomic alterations and known HNSCC subtypes. We further validated the metabolism-related subtypes based on features of ENO1, PFKFB3, NSDHL and SQLE expression in HNSCC by Immunohistochemistry. In addition, genomic characteristics of tumor metabolism that varied among different cancer types were confirmed. RESULTS Based on the median expression of coexpressed cholesterogenic and glycolytic genes, HNSCC subtypes were identified, including glycolytic, cholesterogenic, quiescent and mixed subtypes. The quiescent subtype was associated with the longest survival and was distributed in stage I and G1 HNSCC. Mutation analysis of HNSCC genes indicated that TP53 has the highest mutation frequency. The CDKN2A mutation frequency has the most significant differences amongst these four subtypes. There is good overlap between our metabolic subtypes and the HNSCC subtype. CONCLUSION The four metabolic subtypes were successfully determined in HNSCC. Compared to the quiescent subtype, glycolytic, cholesterogenic and mixed subtypes had significantly worse outcome, which might offer guidelines for developing a novel treatment strategy for HNSCC.
Collapse
Affiliation(s)
- Zekun Zhou
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Jianfei Tang
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Yixuan Lu
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Jia Jia
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Tiao Luo
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Kaixin Su
- grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| | - Haixia Zhang
- The Oncology Department of Xiangya Second Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Liu H, Wang D, Yang Z, Li S, Wu H, Xiang J, Kan S, Hao M, Liu W. Regulation of epigenetic modifications in the head and neck tumour microenvironment. Front Immunol 2022; 13:1050982. [DOI: 10.3389/fimmu.2022.1050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck tumours are common malignancies that are associated with high mortality. The low rate of early diagnosis and the high rates of local recurrence and distant metastasis are the main reasons for treatment failure. Recent studies have established that the tumour microenvironment (TME) can affect the proliferation and metastasis of head and neck tumours via several mechanisms, including altered expressions of certain genes and cytokines. Increasing evidence has shown that epigenetic modifications, such as DNA methylation, histone modification, RNA modification, and non-coding RNAs, can regulate the head and neck TME and thereby influence tumour development. Epigenetic modifications can regulate the expression of different genes and subsequently alter the TME to affect the progression of head and neck tumours. In addition, the cell components in the TME are regulated by epigenetic modifications, which, in turn, affect the behaviour of head and neck tumour cells. In this review, we have discussed the functions of epigenetic modifications in the head and neck TME. We have further examined the roles of such modifications in the malignancy and metastasis of head and neck tumours.
Collapse
|
13
|
Jiang H, Du H, Liu Y, Tian X, Xia J, Yang S. Identification of novel prognostic biomarkers for osteosarcoma: a bioinformatics analysis of differentially expressed genes in the mesenchymal stem cells from single-cell sequencing data set. Transl Cancer Res 2022; 11:3841-3852. [PMID: 36388032 PMCID: PMC9641133 DOI: 10.21037/tcr-22-2370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) play a crucial role in osteosarcoma (OS) growth and progression. This study conducted a bioinformatics analysis of a single-cell ribonucleic acid sequencing data set and explored the MSC-specific differentially expressed genes (DEGs) in advanced OS. METHODS MSC-specific DEGs from GSE152048 was extracted using Seurat R package. These DEGs were then subjected to the functional analysis, and several key genes were further identified and underwent a prognosis analysis. RESULTS A total of 234 upregulated and 280 downregulated DEGs were identified between the MSCs and other cells, and a total of 188 upregulated and 158 downregulated DEGs were identified between the MSCs and osteoblastic cells. The Gene Ontology (GO) functional analysis showed that the specific DEGs between the MSCs and osteoblastic cells were enriched in GO terms such as "collagen catabolic process", "positive regulation of pathway-restricted SMAD protein phosphorylation", "osteoblast differentiation", "regulation of release of cytochrome c from mitochondria" and "interleukin-1 production". The specific DEGs between the MSCs and osteoblastic cells were subjected to a protein-protein interaction network analysis. Further, a survival analysis of 20 genes with combined scores >0.94 revealed that the low expression of ANXA1 (annexin A1) and TPM1 (tropomyosin 1) was associated with the shorter overall survival of OS patients, while the high expression of FDPS (farnesyl pyrophosphate synthase), IFITM5 (interferon-induced transmembrane protein 5), FKBP11 (FKBP prolyl isomerase 11), SP7, and SQLE (squalene epoxidase) was associated with the shorter overall survival of OS patients. In a further analysis, we compared the expression of ANXA1, FDPS, IFITM5, FKBP11, SP7, SQLE, and TPM1 between the MSCs and high-grade OS cells. Further validation studies using the GSE42352 data set revealed that ANXA1, FKBP11, SP7, and TPM1 were more upregulated in the MSCs than the high-grade OS cells, while FDPS, IFITM5, and SQLE were more downregulated in the MSCs than the high-grade OS cells. CONCLUSIONS Our bioinformatics analysis revealed 7 hub genes derived from the specific DEGs between the MSCs and osteoblastic cells. The 7 hub genes may serve as potential prognostic biomarkers for patients with OS.
Collapse
Affiliation(s)
- Haoli Jiang
- Department of Orthopaedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Haoyuan Du
- Department of Orthopaedics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University & the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yingnan Liu
- Department of Hand and Micro-Vasscular Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University & the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiao Tian
- Department of Orthopaedics, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Jinquan Xia
- Department of Orthopaedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People’s Hospital of Shenzhen (Pingshan General Hospital of Southern Medical University), Shenzhen, China
| |
Collapse
|
14
|
Zou Y, Zhang H, Bi F, Tang Q, Xu H. Targeting the key cholesterol biosynthesis enzyme squalene monooxygenasefor cancer therapy. Front Oncol 2022; 12:938502. [PMID: 36091156 PMCID: PMC9449579 DOI: 10.3389/fonc.2022.938502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cholesterol metabolism is often dysregulated in cancer. Squalene monooxygenase (SQLE) is the second rate-limiting enzyme involved in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer, compelling evidence has indicated that SQLE plays a vital role in cancer initiation and progression and is a promising therapeutic target for cancer treatment. In this review, we provide an overview of the role and regulation of SQLE in cancer and summarize the updates of antitumor therapy targeting SQLE.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiulin Tang, ; Huanji Xu,
| |
Collapse
|
15
|
Sabri Bens M, Dassamiour S, Hambaba L, Akram Mela M, Sami R, M. Al-Mush AA, Benajiba N, Al Masoudi LM. In silico Investigation and BSA Denaturation Inhibitory Activity of Ethyl Acetate and N-butanol Extracts of Centaurea tougourensis Boiss. and Reut. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1296.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Hong Z, Liu T, Wan L, Fa P, Kumar P, Cao Y, Prasad CB, Qiu Z, Joseph L, Hongbing W, Li Z, Wang QE, Guo P, Guo D, Yilmaz AS, Lu L, Papandreou I, Jacob NK, Yan C, Zhang X, She QB, Ma Z, Zhang J. Targeting Squalene Epoxidase Interrupts Homologous Recombination via the ER Stress Response and Promotes Radiotherapy Efficacy. Cancer Res 2022; 82:1298-1312. [PMID: 35045984 PMCID: PMC8983553 DOI: 10.1158/0008-5472.can-21-2229] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Over 50% of all patients with cancer are treated with radiotherapy. However, radiotherapy is often insufficient as a monotherapy and requires a nontoxic radiosensitizer. Squalene epoxidase (SQLE) controls cholesterol biosynthesis by converting squalene to 2,3-oxidosqualene. Given that SQLE is frequently overexpressed in human cancer, this study investigated the importance of SQLE in breast cancer and non-small cell lung cancer (NSCLC), two cancers often treated with radiotherapy. SQLE-positive IHC staining was observed in 68% of breast cancer and 56% of NSCLC specimens versus 15% and 25% in normal breast and lung tissue, respectively. Importantly, SQLE expression was an independent predictor of poor prognosis, and pharmacologic inhibition of SQLE enhanced breast and lung cancer cell radiosensitivity. In addition, SQLE inhibition enhanced sensitivity to PARP inhibition. Inhibition of SQLE interrupted homologous recombination by suppressing ataxia-telangiectasia mutated (ATM) activity via the translational upregulation of wild-type p53-induced phosphatase (WIP1), regardless of the p53 status. SQLE inhibition and subsequent squalene accumulation promoted this upregulation by triggering the endoplasmic reticulum (ER) stress response. Collectively, these results identify a novel tumor-specific radiosensitizer by revealing unrecognized cross-talk between squalene metabolites, ER stress, and the DNA damage response. Although SQLE inhibitors have been used as antifungal agents in the clinic, they have not yet been used as antitumor agents. Repurposing existing SQLE-inhibiting drugs may provide new cancer treatments. SIGNIFICANCE Squalene epoxidase inhibitors are novel tumor-specific radiosensitizers that promote ER stress and suppress homologous recombination, providing a new potential therapeutic approach to enhance radiotherapy efficacy.
Collapse
Affiliation(s)
- Zhipeng Hong
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, P.R. China
| | - Tao Liu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Lingfeng Wan
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pengyan Fa
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Pankaj Kumar
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Chandra Bhushan Prasad
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Liu Joseph
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Wang Hongbing
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ayse Selen Yilmaz
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Lanchun Lu
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, USA
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Zhefu Ma
- Department Breast Surgery and Plastic Surgery, Cancer Hospital of China Medical University, 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, China
- Department Breast & Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 of Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, OH, 43210, USA
| |
Collapse
|